PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie ziemskich izotopów kosmogenicznych 10Be i 26Al w badaniach geologicznych – zarys metody oraz stan badań w Polsce

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application of terrestrial cosmogenic nuclides 10Be and 26Al for the geological investigations – a method outline and state of studies in Poland
Języki publikacji
PL
Abstrakty
PL
Celem niniejszego tekstu jest przybliżenie i wstępne zaznajomienie z podstawami metody datowania opartego na izotopach kosmogenicznych, przegląd głównych kierunków badawczych realizowanych przy jej użyciu oraz omówienie aktualnego stanu badań w Polsce. Do najczęściej wykorzystywanych izotopów kosmogenicznych należą 3He, 10Be, 14C, 21Ne, 26Al oraz 36Cl, które znajdują szerokie zastosowanie w badaniach form rzeźby oraz rekonstrukcji procesów geologicznych. Dzięki temu umożliwiają systematyzację geochronologiczną dla późnego kenozoiku, co jest szczególnie ważne tam, gdzie tradycyjne metody badawcze okazują się niewystarczające. Metoda ta cechuje się szerokim potencjałem analitycznym umożliwiając m.in. datowanie wieku ekspozycji różnych form powierzchni terenu, określanie współczynników denudacji i erozji, czy też szczegółową rekonstrukcję chronologii zlodowaceń.
EN
The aim of this paper is to present a methodological introduction into cosmogenic radionuclides dating, summarizing the main research objectives, and an overview of the state of studies in Poland. Cosmogenic nuclides 3He, 10Be, 14C, 21Ne, 26Al and 36Cl are among the most common ones, being widely applied to analyses of geomorphological features and reconstructions of geological processes. Thereby they allow geochronological systematization of the Late Cenozoic, being of primary importance if traditional research methods fail. This approach has broad analytical potential for, i.e., dating of exposure history of different morphological features, estimation of denudation and erosion rates, as well as detailed reconstruction of glacial chronology.
Rocznik
Tom
Strony
279--290
Opis fizyczny
Bibliogr. 74 poz., rys., tab.
Twórcy
autor
  • Uniwersytet Wrocławski, Zakład Geologii Strukturalnej i Kartografii Geologicznej, Instytut Nauk Geologicznych, Pl. M. Borna 9, 50-204 Wrocław
Bibliografia
  • 1. ANTHONY D.M., GRANGER D.E., 2006 — Five million years of Appalachian landscape evolution preserved in cave sediments. GSA Spec. Pap., 404: 39-50.
  • 2. ANTÓN L., RODES A., DE VICENTE G., PALLAS R., GARCIA-CASTELLANOS D., STUART F.M., BRAUCHER R., BOURLES D., 2012 — Quantification of fluvial incision in the Duero Basin (NW Iberia) from longitudinal profile analysis and terrestrial cosmogenic nuclide concentrations. Geomorphology, 165/166: 50-61.
  • 3. ARNOLD M., MERCHEL S., BOURLES D.L., BRAUCHER R., BENEDETTI L., FINKEL R.C., AUMAITRE G., GOTTDANG A., KLEIN M., 2010 — The French accelerator mass spectrometry facility ASTER: Improved performance and developments. Nucl. Instr. Meth. Phys. Res., B268: 1954– 1959.
  • 4. BALCO G., SHUSTER D., 2009 — 26A10-10Be-21Ne burial dating. Earth and Planet. Sci. Let., 286: 570-575.
  • 5. BALCO G., STONE J.O., LIFTON N.A., DUNAI T.J., 2008 — A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26A1 measurements. Quatern. Geochron., 3: 174-195.
  • 6. BRAUCHER R., BOURLES D., BROWN E.T., COLIN F., MULLER J.P., BRAUN J.J., DELAUNE M., MINKO A.E., LESCOUET C., RAISBECK G.M., YIOU F., 2000 — Application of in situ-produced cosmogenic 10Be and 26A1 to the study of lateritic soil development in tropical forest: theory and examples from Cameroon and Gabon. Chem. Geol., 170: 95-111.
  • 7. BRAUCHER R., BROWN E.T., BOURLES D.L., COLIN F., 2003 —In situ-produced 10Be measurements at great depths: impli cations for production rates by fast muons. Earth and Planet. Sci. Let., 211: 251-258.
  • 8. BRAUCHER R., BENEDETTI L., BOURLES D., BROWN E.T., CHARDON D., 2005 — Use of in situ-produced Be-10 in carbonate-rich environments: A first attempt. Geochim. et Cosmochim. Acta, 69: 1473-1478.
  • 9. BRAUCHER R., KALVODA J., BOURLES D.L., BROWN E., ENGEL Z., MERCIER J.L., 2006 — Late Pleistocene deglaciation in the Vosges and the Krkonose mountains: correlation of cosmogenic10Be exposure ages. Geogr. Cas., 58, 1: 3-14.
  • 10. BRAUCHER R., Del CASTILLO P., SIAME L., HIDY A.J., BOURLES D., 2009 — Determination of both exposure time and denudation rate from an in situ-produced 10 Be depth profile: A mathematical proof of uniqueness. Model sensitivity and applications to natural cases. Quatern. Geochron., 4: 56-67.
  • 11. CERLING T.E., CRAIG H., 1994 — Geomorphology and in-situ cosmogenic isotopes. Ann. Rev. Ear. Plan. Scien., 22: 273-317.
  • 12. CHEMELEFF J., VON BLANCKENBURG F., KOSSERT K., JAKOB D., 2010 —Determination of the 10Be half-life by Multi Collector ICP-MS and liquid scintillation counting. Nucl. Instr. Meth. Phys. Res., B268, 2: 192-199.
  • 13. COCKBURN H.A.P., SUMMERFIELD M.A., 2004 — Geomorphological applications of cosmogenic isotope analysis. Prog. Phys. Geogr., 28, 1: 1-42.
  • 14. COCKBURN H.A.P., BROWN R.W., SUMMERFIELD M.A., SEIDL M.A., 2000 — Quantifying passive margin denudation and landscape development using a combined fission-track thermochronology and cosmogenic isotope analysis approach. Earth and Planet. Sci. Let., 179: 429-435.
  • 15. DESILETS D., ZREDA M., 2003 — Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in-situ cosmogenic dating. Earth and Planet. Sci. Let., 206: 21-42.
  • 16. DIEHL R., HALLOIN H., KRETSCHMER K., LICHTI G.G., SCHONFELDER V., STRONG A.W., Von KIELIN A., WANG W., JEAN P., KNODLSEDER J., ROQUES J.P., WEIDENSPOINTNER G., SCHANNE S., HARTMANN D.H., WINKLER C., WUNDERER C., 2006 — Radioactive 26A1 from massive stars in the Galaxy. Nature, 439: 45-47.
  • 17. DUNAI T., 2000 — Scaling factors for production rates of in-situ produced cosmogenic nuclides: a critical reevaluation. Earth and Planet. Sci. Let., 176: 157-169.
  • 18. DUNAI T., 2010 — Cosmogenic nuclides. Principles, Concepts and Applications in the Earth Surface Sciences. Camb. Univ. Press., New York.
  • 19. DUNNE J., ELMORE D., MUZIKAR P., 1999 — Scaling factors for the rates of production of cosmogenic nuclides for geo- metric shielding and attenuation at depth on sloped surfaces. Geomorphology, 27: 3-11.
  • 20. DZIERŻEK J., ZREDA M., 2007 — Timing and style of deglaciation of northeastern Poland from cosmogenic 36C1 dating of glacial and glaciofluvial deposits. Geol Quart, 51, 2: 203-216.
  • 21. DZIERŻEK J., NITYCHORUK J., ZREDA-GOSTYŃSKA G., ZREDA M., 1999 — Metoda datowania kosmogenicznym izotopem 36C1– nowe dane do chronologii glacjalnej Tatr Wysokich. Prz. Geol., 47, 11: 987-992.
  • 22. ENGEL Z., TRACZYK A., BRAUCHER R., WORONKO B., KRIZEK M., 2011 — Use of 10Be exposure ages and Schmidt hammer data for correlation of moraines in the Krkonose Mountains, Poland/Czech Republic. Zeitschrift f'ur Geomorphologie, 55, 2: 175-196.
  • 23. ENGEL Z., BRAUCHER R., TRACZYK A., LAETITIA L., Aster Team, 2014 — 10Be exposure age chronology of the last glaciation in the Krkonose Mountains, Central Europe. Geomorphology, 206: 107-121.
  • 24. GOSSEJ.C., PHILLIPS F.M., 2001—Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Rev, 20: 1475-1560.
  • 25. GRANGER D.E., 2006 — A review of burial dating methods using 10Be and 26A1: in situ produced cosmogenic nuclides and quantification of geological processes. GSA Spec. Pap., 415: 1-16.
  • 26. GRANGER D.E., KIRCHNER J.W., FINKEL R., 1996 — Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. J. Geol., 104: 249-257.
  • 27. GUNNELL Y., BRAUCHER R., BOURLES D., ANDRE G., 2007 — Quantitative and qualitative insights into bedrock landform erosion on the South Indian craton using cosmogenic nuclides and apatite fission tracks. GSA Bulletin, 119, 5/6: 576-585
  • 28. HEISINGER B., LAL D., JULL A.J.T., KUBIK P., IVY-OCHS S., NEUMAIER S., KNIE K., LAZAREV V., NOLTE E., 2002 a — Production of selected cosmogenic radionuclides by muons; 1. Fast muons. Earth and Planet. Sci. Let., 200: 345-355.
  • 29. HEISINGER B., LAL D., JULL A. J. T., KUBIK P., IVY-OCHS S., KNIE K., NOLTE E., 2002b — Production of selected cosmogenic radionuclides by muons; 2. Capture of negative muons. Earth and Planet. Sci. Let., 200: 357-369.
  • 30. HOFMANN H.J., BEER J., BONANI G., Von GUNTEN H.R., RAMAN S., SUTER M., WALKER R.L., WOLFLI W., ZIMMERMANN D., 1987 —10Be: half life and AMS-standards. Nucl. Instr Meth. Phys. Res., B29: 32-36.
  • 31. JULLA.J.T., BURR G.S., 2006 —Accelerator mass spectrometry: Is the future bigger or smaller? Earth and Planet. Sci. Lett., 243: 305-325.
  • 32. KIRCHNER J.W., RIEBE C.S., FERRIER K.L., FINKEL R.C., 2006 — Cosmogenic nuclide methods for measuring long-term rates of physical erosion and chemical weathering. J. Geoch. Expl., 88: 296-299.
  • 33. KOHL C.P., NISHIIZUMI K., 1992 — Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim. et Cosmochim. Acta, 56: 3583-3587.
  • 34. KORSCHINEK G., BERGMAIER A., FAESTERMAN T., GERSTMANN U.C., KNIE K., RUGEL G., WALLNER A., DILLMANN I., DOLLINGER G., LIERSE Von GOSTOMSKI CH., KOSSERT K., MAITIA M., POUTIVTSEV M., REMMERT A., 2010 — A new value for the half-life of 10B by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl. Instr Meth. Phys. Res., B268: 187-191.
  • 35. KUHLEMANN J., KRUMREI I., DANISIK M., Van der BORG K., 2009 — Weathering of granite and granitic regolith in Corsica: short-term 10Be versus long-term thermochronological constraints. W: Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models (red. F. Lisker i in.). Geol. Soc., Spec. Publ., London, 324: 217-235
  • 36. LAL D., 1991 — Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planet. Sci. Let., 104: 424-439.
  • 37. LIFTON N., BIEBER J.W., CLEM J.M., DULDIG M.L., EVENSON P., HUMBLE J.E., PYLE R., 2005 — Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth and Planet. Sci. Let., 239: 140-161.
  • 38. ŁUSZCZEK K., DALCHER N., LEYA I., 2012 — Cosmogenic and radiogenic noble gases in the Sołtmany L6 chondride. Meteorites, 2, 1/2: 39-43.
  • 39. MAKOS M., RINTERKNECHT V., BRAUCHER R., ŻARNOWSKI M., Aster Team, 2016 — Glacial chronology and palaeo climate in the Bystra catchment, Western Tatra Mountains (Poland) during the Late Pleistocene. Quat. Sci. Rev., 134: 74-91.
  • 40. MASARIK J., 2002 — Numerical simulation of in situ production of cosmogenic nuclides. Geochim. et Cosmochim. Acta, 66: A491.
  • 41. MASARIK J., BEER J., 1999 — Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere. J. Geoph. Res., 104: 12099-12111.
  • 42. MASARIK J., FRANK M., SCHAFER J., WIELER R., 2001 — Correction of in situ cosmogenic nuclide production rates for geomagnetic field intensity variations during the past 800,000 years. Geochim. et Cosmochim. Acta, 65, 17: 2995-3003.
  • 43. MERCHEL S., HERPERS U., 1999 — An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochimica Acta, 84: 215-219.
  • 44. MERCHEL S., BRAUCHER R., BENEDETTI L., GRAUBY O., BOURLE'S D., 2008 — Dating carbonate rocks with in-situ produced cosmogenic Be-10: Why it often fails. Quatern. Geochr., 3: 299-307.
  • 45. MERRILL R.T., MCELHINNY M.W., MCFADDEN P.L., 1998 — The Magnetic Field of the Earth. Academic Press, San Diego.
  • 46. MUZIKAR P., 2005 — Geomagnetic field variations and the accumulation of in-situ cosmogenic nuclides in an eroding land-form. Geoch. Cosm. Acta, 69, 16: 4127-4131.
  • 47. NEDERMANN S., 2002 — Cosmic-ray-produced noble gases in terrestrial rocks: dating tools for surface processes. Rev Min. Geoch., 47: 731-784.
  • 48. NISHIIZUMI K., IMAMURA M., CAFFEE M. W, SOUTHON J.R., FINIKEL R.C., MCANINCH J., 2007 — Absolute calibration of 10BeAMS standards. Nucl. Instr. Meth. Phys. Res., B258: 403-413.
  • 49. O'BRIEN K., 1979 — Secular variations in the production of cosmogenic isotopes in the Earth's atmosphere. J. Geoph. Res., 84: 423-431.
  • 50. PHILLIPS W.M., HALL A.M.; MOTTRAM R., FIFIELD L.K., SUGDEN D.E., 2006 — Cosmogenic 10Be and 26A1 exposure ages of tors and erratics; Cairngorm Mountains, Scotland: Timescales for the development of a classic landscape of selective linear glacial erosion. Geomorph., 73: 222-245.
  • 51. PHILLIPS M.F., ARGENTO D.C., BALCO G., CAFFEE M.W., CLEM J., DUNAI T.J., FINKEL R., GOEHRING B., GOSSE J.C., MUDSON A.M., JULL, T., KELLY, M.A., KURZ, M., LAL D., LIFTON N., MARRERO S.M., NISHIIZUMI K., REEDY, R.C., STONE J.O.H., SWANSON, T., ZREDA, M.G., 2016 — The CRONUS-Earth Project: A synthesis. Quatern. Geochronology, 31: 119-154.
  • 52. PLACZEK C., GRANGER D., CAFFEE M., 2007 — Radiogenic 26A1 chronometry of evaporites. Geoch. Cosm. Acta, 71: A765.
  • 53. PORTENGA E.W., BIERMAN P.R., 2011 — Understanding Earth's eroding surface with 10Be. GSA Today, 21, 8: 4-10.
  • 54. REEDY R.C., 1987 — Predicting the production rates of cosmogenic nuclides in extraterrestrial matter. Nuc. Inst. Met. Phys. Res., B29: 251-261.
  • 55. REEDY R.C., ARNOLD J.R., LAL D., 1983 — Cosmic-ray record in solar system matter. Science, 219: 127-134.
  • 56. REPKA J.L., ANDERSON R.S., FINKEL R.C., 1997 — Cosmogenic dating of fluvial terraces, Fremont River, Utah. Earth and Planet. Sci. Let., 152: 59-73.
  • 57. RINTERKNECHT V.R., MARKS L., PIOTROWSKI J.A., RAISBECK G.M., YIOU F., BROOK E.J., CLARK P.U., 2005 — Cosmogenic 10Be ages on the Pomeranian Moraine, Poland. Boreas, 34: 186-191.
  • 58. RINTERKNECHT V.R., CLARK P.U., RAISBECK G.M., YIOU F., BITINAS A., BROOK E.J., MARKS L., ZELCS V., LUNKA J.P., PAVLOVSKAYA I.E., PIOTROWSKI J.A., RAUKAS A., 2006 — The last deglaciation of the Southeastern sec- tor of the Scandinavian Ice Sheet. Science, 311: 1449-1452.
  • 59. RIXHON G., BRAUCHER R., BOURLES D., SIAME L., BOVY B., DEMOULIN A., 2011 — Quaternary river incision in NE Ardennes (Belgium) - Insights from 10Be/26A1 dating of river terraces. Quatern. Geochr., 6: 273-284.
  • 60. SCHALLER M., Von BLANCKENBURG F., HOVIUS N., KUBIK P.W., 2001 — Large-scale erosion rates from in situ- produced cosmogenic nuclides in European river sediments. Earth and Planet. Sci. Let., 188: 441-~58.
  • 61. SCHILDGEN T.F., PHILLIPS W.M., PURVES R.S., 2005 — Simulation of snow shielding corrections for cosmogenic nuclide surface exposure studies. Geomorphology, 64: 67-85.
  • 62. SHARMA P., MIDDLETON R., 1989 — Radiogenic production of 10Be and 26A1 in uranium and thorium ores: Implications for studying terrestrial samples containing low levels of10Be and 26A1. Geochim. et Cosmochim. Acta, 53: 709-716.
  • 63. SHUSTER D.L., FARLEY K.A., 2004 — 4He/3Hethermochronometry. Earth and Planet. Sci. Let., 217: 1-17.
  • 64. SIAME L., BELLIER O., BRAUCHER R., SEBRIER M., CUSHING M., BOURLES D.L., HAMELIN B., BAROUX E., DE VOOGD B., RAISBECK B., YIOU F., 2004 — Local erosion rates versus active tectonics: cosmic ray exposure modelling in Provence (south-east France). Earth and Planet. Sci. Let., 220: 345-364.
  • 65. SKRZYPCZAK E., SZEFLIŃSKI Z., 2012 — Wstęp do fizyki jądra atomowego i cząstek elementarnych (wyd. 2), Wydaw. PWN, Warszawa.
  • 66. SOBCZYK A., 2012 — Datowanie procesów rzeźbotwórczych w Rudawach Janowickich i Kotlinie Kamiennogórskiej (Sudety) metodami termochronologii niskotemperaturowej oraz analizy radionuklidów kosmogenicznych [pr. doktor.), Uniwersytet Wrocławski, Wrocław, 130 pp.
  • 67. SOBCZYK A., 2013 — Dunai, Tibor, 2010, Cosmogenic nuclides. Principles, concepts and applications in the earth surface sciences. Cambridge University Press, New York, 187 pp. Prz. Geol., 61, 8: 449.
  • 68. STONE J.O., 2000 — Air pressure and cosmogenic isotope production. J. Geoph. Res., 105: 23753-23759.
  • 69. STROEVEN A.P., FABEL D., HATTESTRAND C., HARBOR J., 2002 — A relict landscape in the centre of Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles. Geomorphology, 44: 145-154.
  • 70. TASSY A., MOCOCHAI L., BELLIER O., BRAUCHER R., GATTACCECA J., BOURLES D.L., 2013 — Coupling cosmogenic dating and magnetostratigraphy to constrain the chronological evolution of peri-Mediterranean karsts during the Messinian and the Pliocene: Example of Ardeche Valley, Southern France. Geomorphology, 189: 81-92.
  • 71. TORRES ACOSTA V., SCHILDGEN T.F., CLARKE B.A., SCHERLER D., BOOKHAGEN B., WITTMANN H., Von BLANCKENBURG F., STRECKER M.R., 2015 — Effect of vegetation cover on millennial-scale landscape denudation rates in East Africa. Lithosphere, 7, 4: 408-420
  • 72. VAN DEN WETEREN F.M., DUNAI T.J., 2001 — Late Neogene passive margin denudation history - cosmogenic isotope measurements from the central Namib desert. Global and Planetary Change, 30: 271-307.
  • 73. WAKASA S., MATSUZAKI H., HORIUCHI K., TANAKAY., MATSUKURA Y., 2004 — Exposure ages deduced from cosmogenic 10Be and 26A1 produced in situ: application to granite domes and tors in Korea. Nuc. Inst. Met. Phys. Res. B223/224: 628~32.
  • 74. WIBIG T., 2002 - Jak odkrywano promieniowanie kosmiczne. Acta Univ. Lodz., Fol. Phys., 26, 3: 1-14.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e2e4a28-226e-4066-9142-913f46526d5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.