PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Water Quality Index to Assess the Potability of the Phreatic Aquifer in Ouargla (Algeria)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Groundwater is essential for sustainable development and drinking water supply in the Saharan regions. This work aims to assess the quality of water for domestic use and the hydrogeochemical characteristics of the phreatic aquifer of the Ouargla. Forty-two (42) wells capturing the phreatic aquifer are sampled and analyzed. The parameters analyzed are pH, EC, TDS, cations and anions. The water’s potability was evaluated using the Water Quality Index (WQI) method, using the main physicochemical parameters that have potential adverse effects on human health. The results obtained show three classes: the poor class (14.29%), the very poor class (19.04%), and the non-potable class (66.67%). The analysis of the Piper and the Gibbs diagrams, the Pearson correlation matrix and the diagrams of relationship between the major elements, as well as the indices of saturation of the main minerals, shows that the groundwater samples were arranged into two groups; Ca-Mg-SO4 -Cl (38.5%) and Na-Cl (61.5%), the geochemical processes occurring in the aquifer mainly include the dissolution of halite, gypsum, the cation exchange between water and clay minerals and anthropogenic inputs.
Twórcy
  • Sahara Geology Laboratory. Department of Earth and Universe Sciences, University of Ouargla, Ouargla, Algeria
  • Laboratory of Underground Oil, Gas and Aquifer Reservoirs, Department of Earth and Universe Sciences, University of Kasdi Merbah, Route de Ghardaïa, Ouargla, Algeria
  • Sahara Geology Laboratory. Department of Earth and Universe Sciences, University of Ouargla, Ouargla, Algeria
autor
  • Sahara Geology Laboratory. Department of Earth and Universe Sciences, University of Ouargla, Ouargla, Algeria
  • Laboratory of Underground Oil, Gas and Aquifer Reservoirs, Department of Earth and Universe Sciences, University of Kasdi Merbah, Route de Ghardaïa, Ouargla, Algeria
Bibliografia
  • 1. ANRH. 2004. Data on the stratigraphic logs of boreholes in the Wilaya of Ouargla. Algeria. National Agency for Hydraulic Resources. Regional Direction South, Ouargla.
  • 2. Appelo C.A.J., Postma D. 1994. Geochemistry, Groundwater and Pollution. A.A. Balkema, Rotterdam, The Netherlands.
  • 3. Arachchige T., Nilusha T., Perera H., Mudiyanselage M., Sonali D. 2021. Spatial and Physicochemical Assessment of Groundwater Quality in the Urban Coastal Region of Sri Lanka. Environmental Science and Pollution Research, 0123456789.
  • 4. Arfa A., Bouselsal B., Zeddouri A., Kebili M. 2022. Groundwater Geochemical and Quality of the Continental Intercalary Aquifer in Béni Ounif (Southwest Algeria). Journal of Ecological Engineering 2022, 23(9), 1–12. doi.org/10.12911/22998993/151070
  • 5. Banda T.D., Muthukrishna V.K. 2020. Development of Water Quality Indices (WQIs): A Review. Polish Journal of Environmental Studies, 29(3), 2011–2021.
  • 6. Bouselsal B., Zouari K. 2022. Identification of Groundwater Quality and Hydrogeochemical Processes in the Shallow Aquifer of El-Oued (Algerian Sahara). New Prospects in Environmental Geosciences and Hydrogeosciences. Springer International Publishing. doi.org/10.1007/978-3-030-72543-3_130
  • 7. Bouselsal B., Saibi S. 2022. Evaluation of Groundwater Quality and Hydrochemical Characteristics in the Shallow Aquifer of El-Oued Region (Algerian Sahara). Groundwater for Sustainable Development, 17, 100747. doi.org/10.1016/j.gsd.2022.100747.
  • 8. Bouselsal B., et Belksier M.S. 2018. Caractérisation géochimique de l’aquifère de Complexe Terminal de El-Oued (SE Algérie) ». Journal International Sciences et Technique de l’Eau et de l’Environnement. Volume III - Numéro 1 - Avril 2018, 74–80.
  • 9. Bouselsal B., Zeddouri A., Belksier M.S., Fenazi B. 2015. Contribution de la Méthode de Vulnérabilité Intrinsèque GOD à l’Etude de la Pollution de la Nappe Libre d’Ouargla (SE Algérie) ». International Journal for Environment & Global Climate Change, 3(4), 92–99.
  • 10. Boussaada N., Bouselsal B., Benhamida S.A., Hammad N., Kharroubi M. 2023. Geochemistry and water quality assessment of continental intercalary aquifer in Ouargla region (Sahara, Algeria). Journal of Ecological Engineering, 24(2), 279–294. doi.org/10.12911/22998993/156832
  • 11. Brown R.M., Mc Clelland N., Deininger R.A., Tozer R.G. 1970. A water quality index - do we dare. Water Sewage Works, 117, 339–343.
  • 12. Busson. G. 1970. Le Mésozoïque saharien. 2ème partie: Essai de synthèse des données des sondages algéro-tunisiens. Edit., Paris, « Centre Rech. Zones Arides» Géol., 11, 811
  • 13. Castany G. 1982. Bassin sédimentaire du Sahara septentrional (Algérie-Tunisie). Aquifères du Continental intercalaire et du complexe terminal. Bull BRGM2, III(2), 127–147.
  • 14. Chellat S. 2014. Cadre Sédimentologique et Paléoenvironnemental des Formations mio-pliocènes de la région de Guerrara (Ghardaïa, Algérie). Doctoral thesis. University of Constantine, 1, 192.
  • 15. Cornet A. 1964. Introduction à l’hydrogéologie Saharienne. Revue de Géographie Physique et de Géologie Dynamique, 61, 5–72.
  • 16. Foster S., Hirata R., Gomes D., D’Elia M., Paris, M. 2002. Groundwater Quality Protection: A Guide for Water Utilities, Municipal Authorities and Environment Agencies. World Bank Publication.
  • 17. Freeze R.A., Cherry J.A. 1979. Groundwater. Prenctice Hall. Inc, New Jersey
  • 18. Galal Uddin M.d., Stephen N., Agnieszka I.O. 2021. A Review of Water Quality Index Models and Their Use for Assessing Surface Water Quality. Ecological Indicators, 122(December 2020), 107218. doi.org/10.1016/j.ecolind.2020.107218
  • 19. Garrett E.D. 2001. Sodium Sulfate: Handbook of Deposits, Processing, Properties and Use. Academic Press, San Diego., CA.
  • 20. Gibbs R.J. 1970. Mechanisms controlling world water chemistry. Science, 170, 1088–1090.
  • 21. Hadjkouider M. 2019. Géochimie et minéralogie des formations et des eaux de la nappe superficielle de Ouargla. Doctoral thesis. University of Ouargla, 249.
  • 22. Hamdi-Aïssa B. 2001. Le fonctionnement actuel et passé de sols du Nord-Sahara (Cuvette de Ouargla). Approches micromorphologique, géochimique, minéralogique et organisation spatiale. Doctoral thesis, National Agronomic Institute, Paris-Grignon, 283.
  • 23. Jamshidi A., Maryam M., Mohammad M., Golbini M., Maryam P. 2021. Water Quality Evaluation and Non-Cariogenic Risk Assessment of Exposure to Nitrate in Groundwater Resources of Kamyaran, Iran : Spatial Distribution, Monte-Carlo Simulation, and Sensitivity Analysis. Journal of Environmental Health Science and Engineering, 19, 1117–1131. doi.org/10.1007/s40201-021-00678-
  • 24. JORADP. 2011. Décret exécutif n°11-125 du 22 mars 2011, relatif à la qualité de l’eau de consommation humaine, Journal officiel de la république algérienne.
  • 25. Kebili M., Bouselsal B., Gouaidia L. 2021. Hydrochemical Characterization and Water Quality of the Continental Intercalare Aquifer in the Ghardaïa Region (Algerian Sahara). Journal of Ecological Engineering, 22(10), 152–162. doi.org/10.12911/22998993/142041
  • 26. Kharroubi M., Bouselsal B., Ouarekh M., Benaabidate L., Khadri R. 2022. Water Quality Assessment and Hydrogeochemical Characterization of the Ouargla Complex Terminal Aquifer (Algerian Sahara). Arabian Journal of Geosciences, 1–24. doi.org/10.1007/s12517-022-09438-z
  • 27. Kraiem Z., Zouari K., Bencheikh N., Agoun A.,Abidi B. 2014. Processus de min´eralisation de la nappe du Plio-Quaternaire dans la plaine de Segui-Zograta (Sud- Ouest tunisien). Hydrol. Sci. J. doi.org/10.1080/02626667.2013.877587
  • 28. Lapworth D.J., Nkhuwa D.C.W., Okotto-Okotto J., Pedley S., Stuart1 M.E., Tijani M.N., Wright J. 2017. Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health. Hydrogeology Journal, 25, 1093–1116. doi.org/10.1007/s10040-016-1516-6
  • 29. Medjani F., Djidel M., Labar S., Bouchagoura L., Rezzag Bara C. 2021. Groundwater Physico Chemical Properties and Water Quality Changes in Shallow Aquifers in Arid Saline Wetlands, Ouargla, Algeria. Applied Water Science, April, 0–9. doi.org/10.1007/s13201-021-01415-3
  • 30. Mukherjee A., von Br¨omssen M., Scanlon B.R., Bhattacharya P., Fryar A.E., Hasan M. A., Ahmed K.M., Chatterjee D., Jacks G., Sracek O. 2008. Hydrogeochemical comparison between the Bhagirathi and Meghna sub-basins, Bengal basin, India and Bangladesh: effects of overlapped redox zones on dissolved arsenic. J. Contam. Hydrol., 99(1–4), 31–48. doi.org/10.1016/j.jconhyd.2007.10.005
  • 31. Nezli I.E. 2009. Approche hydrogéochimique à l’étude des aquifères de la basse vallée de l’Oued M’ya (Ouargla). Doctoral thesis. University of Biskra, 143.
  • 32. NOM. 2020. National Office of Meteorology of Ouargla : « Bulletins mensuels de relevé des paramtres climatologiques en Algérie (période 2000–2020). Ouargla. Algeria.
  • 33. OSS (Observatoire Sahara et Sahel).2003. Northern Sahara Aquifer System: Joint Management of a Transboundary Basin. Synthesis report, Tunisia.
  • 34. Ouarekh M., Bouselsal B., Belksier M.S., Benaabidate L. 2021. Water quality assessment and hydrogeochemical characterization of the Complex Terminal aquifer in Souf valley, Algeria. Arabian J. Geosci., 14, 2239. doi.org/10.1007/s12517-021-08498-x
  • 35. Parkhurst D., Appelo C. 1999. User’s guide to PHREEQC (Version 2) — a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In: Water-Resources Investigation Report 99-4259. U.S. Department of the Interior, U.S. Geological Survey, Denver, Colorado.
  • 36. Peiyue L., Xiaodong H., Wenyu G. 2019. Spatial Groundwater Quality and Potential Health Risks Due to Nitrate Ingestion through Drinking Water: A Case Study in Yan’an City on the Loess Plateau of Northwest China. Human and Ecological Risk Assessment, 25(1–2), 11–31.
  • 37. Piper A.M. 1944. Graphical interpretation of water analysis, Transactions of the American Geophysical Union., 25, 914–923.
  • 38. Qichen H., Yong X., Kang C., Zhu Y. 2020. Comprehensive Understanding of Groundwater Geochemistry and Suitability for Sustainable. Drinking Purposes in Confined Aquifers of the Wuyi Region, Central North China Plain. Water, 12, 3052. doi.org/10.3390/w12113052
  • 39. Rodier J., Brazin C., Broutin J.P, Chambon P, Champsaur H., Rodi L. 1996. L’analyse de l’eau, 8`eme ´edition. Dunod, Paris, France.
  • 40. Sadeghi A., Saman G., Gholamreza Z., Hassan K. 2021. Assessing the Change of Groundwater Quality Compared with LandUse Change and Precipitation Rate (Zrebar Lake’s Basin). Applied Water Science, 1–15. doi.org/10.1007/s13201-021-01508-z
  • 41. Sail N., Saighi O. 2019. Hydrogeochemical characterization of the Complexe Terminal aquifer system in hyper-arid zones: the case of wadi Mya Basin, Algeria. Arabian Journal of Geosciences, 12, 793. doi.org/10.1007/s12517-019-4917-8
  • 42. Satouh A., Bouselsal B., Chellat, S., Benaabidate L. 2021. Determination of Groundwater Vulnerability Using the DRASTIC Method in Ouargla Shallow Aquifer (Algerian Sahara). Journal of Ecological Engineering, 22(6), 1–8. doi.org/10.12911/22998993/137680
  • 43. Simler R. 2014. DIAGRAMMES. Logiciel d’hydrochimiemultilangage. Laboratoire d’Hydrogéologie d’Avignon.
  • 44. Singh C.K., Shashtri S., Mukherjee S., Kumari R., Avatar R., Singh A., Singh R.P. 2011. Application of GWQI to assess effect of land use change on groundwater quality in lower Shiwaliks of Pun-jab: remote sensing and GIS based approach. Wat Res Manag.
  • 45. Sivakumar K., Prabakaran K., Venkatramanan S., Sang Yong C., Kongeswaran T,. Muruganantham A., Sathish S,. Sung H. 2022. Hydrogeochemical Survey along the Northern Coastal Region of Ramanathapuram District, Tamilnadu, India. Applied Sciences, 12, 5595. doi.org/10.3390/app12115595
  • 46. Slimani R., Guendouz A., Trolard F., Moulla A.S., Hamdi-aïssa B. 2017. Identification of Dominant Hydrogeochemical Processes for Groundwaters in the Algerian Sahara Supported by Inverse Modeling of Chemical and Isotopic Data.” 1669–91. doi.org/10.5194/hess-21-1669-2017
  • 47. Sracek O., Bhattacharya P., Jacks G., Gustafsson J.P., von Br¨omssen M. 2004. Behavior of arsenic and geochemical modeling of arsenic contamination. Appl. Geochem, 19(2), 169–180. /doi.org/10.1016/j.apgeochem.2003.09.005.
  • 48. Touahri M., Belksier M.S., Boualem B., Kebili M. 2022. Groundwater Quality Assessment of Hassi Messaoud Region (Algerian Sahara). Journal of Ecological Engineering, 23(11), 165–178. doi.org/10.12911/22998993/153396
  • 49. UNESCO. 1972. Etude des Ressources en Eau de Sahara Septentrional. (7 vols. etannexes). UNESCO. Paris. France.
  • 50. Venkatramanan S., Sang Yong C., Sekar S., Seung Y. L., Hussam Eldin E. 2017. Factors Controlling Groundwater Quality in the Yeonjegu District of Busan City, Korea, Using the Hydrogeochemical Processes and Fuzzy GIS. Environmental Science and Pollution Research, 24(30), 23679–23693. doi.org/10.1007/s11356-017-9990-5
  • 51. Zeddouri A., Derradji F., Hadj-Saïd S. 2010. Salinity Origin of Terminal Complex Water in Ouargla Region (South East of Algeria). Physical and Chemical News, 53(2010), 62–69.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e2945c9-750d-4c79-83bd-81adaeb9b8ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.