PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on multiferroic properties of BiFeO3 ceramics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
BiFeO3 polycrystalline ceramics was prepared by solid-state reaction method and its structural, optical and magnetic properties were investigated. BiFeO3 was synthesized in a wide range of temperature (825 – 880 °C) and a well crystalline phase was obtained at a sintering temperature of 870 °C. X-ray diffraction patterns of the samples were recorded and analyzed for the confirmation of crystal structure and the determination of the lattice parameters. The average grain size of the samples was found to be between 1 – 2 μm. The determined value of direct bandgap of BiFeO3 ceramics was found to be 2.72 eV. The linear behavior of M-H curve at room temperature confirmed antiferromagetic properties of the BiFeO3 (BFO). S shaped M-H curve was obtained at a temperature of 5 K. In the whole temperature measurement range (5 – 300 K) of M-T, no anomalies were observed due to high Curie temperature and Neel temperature of the BiFeO3.
Słowa kluczowe
Wydawca
Rocznik
Strony
471--475
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Department of Physics, Integral University, Lucknow-226026, UP, India
autor
  • Functional Nanomaterials Research Laboratory, Department of Physics and Centre of Nanotechnology, Indian Institute of Technology, Roorkee 247667, India
  • Department of Physics, Integral University, Lucknow-226026, UP, India
  • Department of Physics, Integral University, Lucknow-226026, UP, India
Bibliografia
  • [1] HUR N., PARK S., SHARMA P.A., AHN J.S., GUHA S., CHEONG S.W., Nature (2004), 392.
  • [2] CATALAN G. et al., Phys. Rev. Lett., 100 (2008), 027602.
  • [3] WANG Y., NAN C. W., Appl. Phys. Lett., 89 (2006), 052903.
  • [4] HILL N.A., J. Phys. Chem. B, 104 (2000), 6694.
  • [5] WANG J. et al., Science, 299 (2003), 1719.
  • [6] GAO F. et al., Adv. Mater., 19 (2007), 2889.
  • [7] TAKAHASHI K., KIDA N., TONOUCHI M., Phys. Rev. Lett., 96 (2006), 117402.
  • [8] POPOV Y. F., KADOMTSEVA A. M., VOROBEV G. P., ZVEZDIN A. K., Ferroelectrics, 162 (1994), 135.
  • [9] MURASHOV V. A., RAKOV D. N., IONOV V. M., DUBENKO I. S., TITOV Y. V., GORELIK V. S., Ferroelectrics, 11 (1994), 162.
  • [10] BAI F. et al., Appl. Phys. Lett., 86 (2005), 32511.
  • [11] PRELLIER W., SINGH M. P., MURUGAVEL P., J. Phys., Condens. Matter, 17 (2005), R803.
  • [12] KUBEL F., SCHMID H., Acta Cryst. B, 46 (1990), 698.
  • [13] PALAI R. et al., Phys. Rev. B, 77 (2008), 014110.
  • [14] GUJAR T.P., SHINDE V. R., LOKHANDE C.D., Mater. Chem. Phys., 103 (2007), 142.
  • [15] FRUTH V. et al., J. Eur. Ceram. Soc., 27 (2007), 937.
  • [16] CLARK S. J., ROBERTSON J., Appl. Phys. Lett., 90 (2007), 132903.
  • [17] IHLEFELD J. F. et al., J. Appl. Phys. Lett., 92 (2008), 142908.
  • [18] XU Y., SHEN M., Mat. Lett., 62 (2008), 3600.
  • [19] TAUC J. (Ed.), Amorphous and Liquid Semiconductor, Plenium Press, New York, 1974, 159.
  • [20] LEBEUGLE D. et al., Phys. Rev. B, 76 (2007), 024116.
  • [21] SOSNOWSKA I., PETERLIN-NEUMAIER T., STEICHELE E., J. Phys. C, 15 (1982), 4835.
  • [22] SOSNOWSKA I., LOEWENHAUPT M., DAVID W. I. F., Physica B, 117 (1992), 180.
  • [23] JUN LU et al., Euro. Phys. J. B, 75 (2010), 451.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e234f80-8967-46a8-a826-ea2b2e4a6d82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.