PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Analysis of the time slot length impact of selected data link layer protocols on energy resource consumption in wireless sensor networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper analyzes the effect of time slots on the correctness of packet delivery for selected Media Access Control protocols of WSN (Wireless Sensor Networks) like B-MAC, X-MAC, and L-MAC. In the study, reliability, and power consumption were used as indicators of the quality of the protocol variant. The length of the time slot was shown to affect the consumption of energy resources of the nodes. For all network sizes considered, it was shown that the best results were achieved by the LMAC protocol, which also proved to be the most energy-efficient with a low ratio of energy resource consumption.
Twórcy
  • Faculty of Electrical and Computer Engineering, Rzeszów University of Technology, 35-959 Rzeszów, al. Powstańców Warszawy 12, Poland
  • Faculty of Electrical and Computer Engineering, Rzeszów University of Technology, 35-959 Rzeszów, al. Powstańców Warszawy 12, Poland
  • Faculty of Electrical and Computer Engineering, Rzeszów University of Technology, 35-959 Rzeszów, al. Powstańców Warszawy 12, Poland
autor
  • Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669 Brno, Czech Republic
Bibliografia
  • 1. Vijayalakshmi, S.R., Muruganand, S. Wireless Sensor Networks. Mercury Learning and Information, 2018.
  • 2. Strait, G. The Complete List of Wireless IoT Network Protocols. Link Labs, 2016; online: https://www.link-labs.com/blog/complete-list-iot-network-protocols.
  • 3. Śliwa, R.E., Dymora, P., Mazurek, M., et al. The Latest Advances in Wireless Communication in Aviation, Wind Turbines, and Bridges. Inventions, 2022; 7(18). https://doi.org/10.3390/inventions701001.
  • 4. Kochhar, P., Kaur, P., Singh, S., Sharma. Protocols for Wireless Sensor Networks: A Survey. Journal of Telecommunications and Information Technology, 1/2018, online: http://dlibra.itl.waw.pl/dlibra-webapp/Content/2021/ISSN_1509-4553_1_2018_77.pdf.
  • 5. Dymora, P., Mazurek, M., Smalara, K. Modeling and Fault Tolerance Analysis of ZigBee Protocol in IoT Networks. Energies, 2021; 14(24), 8264. https://doi.org/10.3390/en14248264.
  • 6. Types of Wireless Communication Protocols in IoT, IoT DesignPro, 2019, online: https://iotdesignpro.com/articles/different-types-of-wireless-communication-protocols-for-iot [access: 13.02.2024].
  • 7. Musuvathi, M., Park, D.Y.W., Chou, A., Engler, D.R., Dill, D.L. A Pragmatic Approach to Model Checking Real Code. Chapter: Description of the AODV Protocol. Proceedings of OSDI, 2002, 75–88.
  • 8. Johnson, D., Maltz, D., Broch, J. The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks. Ad Hoc Networking, 2002.
  • 9. Optimized Link State Routing Protocol. GeeksforGeeks, 2020, online: https://www.geeksforgeeks.org/optimized-link-state-routing-protocol/ [access: 13.04.2024].
  • 10. Clausen, T., Jacquet, P. Optimized Link State Routing Protocol (OLSR). Document RFC 3626, Network Working Group, October 2003, online: https://www.rfc-editor.org/rfc/rfc3626.html#page-8 [access: 13.02.2024].
  • 11. Tan, M.S., Tian, H.T., Chen, M., Li, X. The Improvement of Preamble Mechanism and Addition of TDMA/CSMA Mechanism for B-MAC, Measuring Technology and Mechatronics Automation. PTS 1 AND 2, Book Series Applied Mechanics and Materials, 2011; 48–49, 1261–1264. https://doi.org/10.4028/www.scientific.net/AMM.48-49.1261.
  • 12. Khan, M.U., Ahmed, S., et al. Various Node Mobility Scenarios of Wireless Sensor Networks based on B-MAC Protocol. IEEE, 2017 Fourth HCT Information Technology Trends (ITT), 61–66.
  • 13. Hadas, Z., Zelenika, S., Pakrashi, V. Vibration Energy Harvesting for Wireless Sensors. Sensors Special Issue, 2022; 22, 4578. https://doi.org/10.3390/s22124578.
  • 14. Hadas, Z., Rubes, O., Ksica, F., Chalupa, J. Kinetic Electromagnetic Energy Harvester for Railway Applications - Development and Test with Wireless Sensor. Sensors Special Issue, 2022; 22, 905. https://doi.org/10.3390/s22030905.
  • 15. Shabbir, N., Hassan, S.R. Routing Protocols for Wireless Sensor Networks (WSNs). Wireless Sensor Networks – Insights and Innovations, 2017, online: https://www.intechopen.com/chapters/56541 [access: 19.04.2024].
  • 16. Ketshabeswe, L.K., Zungeru, A.M., Mangwala, M., Chuma, J.M., Sigweni, B. Communication protocols for wireless sensor networks: A survey and comparison. Heliyon, 2019, online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531673/ [access: 16.05.2024].
  • 17. Zacharias, S., Newe, T. Competition at the wireless sensor network MAC layer: Low power probing interfering with X-MAC. Sensors & Their Applications. XVI Journal of Physics Conference Series, 307, 012038. https://doi.org/10.1088/1742-6596/307/1/012038.
  • 18. OMNeT++ simulator website: https://omnetpp.org/ [access: 13.05.2024].
  • 19. RStudio website: https://posit.co/products/open-source/rstudio/ [access: 13.05.2024].
  • 20. Afroz, F., Braun, R. Energy-efficient MAC protocols for wireless sensor networks: A survey. International Journal of Sensor Networks, 2020.
  • 21. Khan, A., Siddiqui, S., Ghani, S. Optimizing MAC Layer Performance for Wireless Sensor Networks in eHealth. Proceedings - 2020 IEEE 44th Annual Computers, Software, and Applications Conference, COMPSAC, 2020.
  • 22. Afroz, F., Braun, R., Chaczko, Z. XX-MAC and EX-MAC: Two Variants of X-MAC Protocol for Low Power Wireless Sensor Networks. Ad-Hoc and Sensor Wireless Networks, 2022.
  • 23. Ramesh, S., Yaashuwanth, C., Prathibanandhi, K. Design of optimized compressed sensing routing protocol for wireless multimedia sensor networks. Int. J. Commun. Syst., 2021; 34, e4887.
  • 24. Wang, X., Wu, H., Miao, Y., Zhu, H. A hybrid routing protocol based on naïve bayes and improved particle swarm optimization algorithms. Electronics, 2022; 11, 869.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e1f9436-ddae-408a-ad56-8131639be351
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.