PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of synthesis methods in position optimisation and selection of tuned mass damper (TMD) parameters for systems with many degrees of freedom

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper formulates and formalises a method for selecting parameters of the tuned mass damper (TMD) for primary systems with many degrees of freedom. The method presented uses the properties of positive rational functions, in particular their decomposition, into simple fractions and continued fractions, which is used in the mixed method of synthesis of vibrating mechanical systems. In order to formulate a method of tuning a TMD, the paper discusses the basic properties of positive rational functions. The main assumptions of the mixed synthesis method is presented, based on which the general method of determining TMD parameters in the case of systems with many degrees of freedom was formulated. It has been shown that a tuned mass damper suppresses the desired resonance zone regardless of where the excitation force is applied. The advantages of the formulated method include the fact of reducing several forms of the object’s free vibration by attaching an additional system with the number of degrees of freedom corresponding to the number of resonant frequencies reduced. In addition, the tuned mass damper determined in the case of excitation force applied at a single point can be attached to any element of the inertial primary system without affecting the reduction conditions in this way. It results directly from the methodology formalised in the paper. As part of the paper, numerical calculations were performed regarding the tuning of the TMD to the first form of free vibration of a system with 3 degrees of freedom. The parameters determined were subjected to analysis and verification of the correctness of the calculations carried out. For the considered case of a system with 3 degrees of freedom together with a TMD, time responses of displacement, from each floor, were generated to excitation induced by a harmonic force equal to the first form of vibration of the basic system. In addition, in the case of the parameters obtained, the response of the inertial element system to which the TMD was attached to random white noise excitation was determined.
Rocznik
Strony
185--211
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., wzory
Twórcy
  • Departament of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
  • Departament of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • [1] E. Hahnkamm: The damping of the foundation vibrations at varying excitation frequency, Master Archit., 4 (1932), 192-201.
  • [2] Y. Shen, X. Wang, S. Yang and H. Xing: Parameters optimization for a kind of dynamic vibration absorber with negative stiffness,. Mathematical Problems in Engineering, (2016), Article ID 9624325, DOI: 10.1155/2016/9624325.
  • [3] G. B. Warburton: Optimum absorber parameters for various combinations of response and excitation parameters, Earthquake Engineering & Structural Dynamics, 10(3), (1982), 381-401, DOI: 10.1002/eqe.42901
  • [4] F. Sadek, B. Mohraz, A. W. Taylor, and R. M. Chung: A method of estimating the parameters of tuned mass dampers for seismic applications, Earthquake Engineering & Structural Dynamics, 26(6), (1997), 617-635, DOI: 0.1002/(SICI)1096-9845(199706)26:63.0.CO;2-Z.
  • [5] A. Dymarek, T. Dzitkowski, K. Herbuś, P. Ociepka, and A. Sękala: Use of active synthesis in vibration reduction using an example of a four-storey building, Journal of Vibration and Control, 26(17-18), (2020), 1471-1483, DOI: 10.1177/1077546319898970.
  • [6] A. Dymarek and T. Dzitkowski: Inverse task of vibration active reduction of mechanical systems, Mathematical Problems in Engineering, (2016), Article ID 3191807, DOI: 10.1155/2016/3191807.
  • [7] T. Dzitkowski and A. Dymarek: Active synthesis of discrete systems as a tool for stabilisation vibration, Applied Mechanics and Materials, 307 (2013), 295-298, DOI: 10.4028/www.scientific.net/AMM.307.295.
  • [8] T. Dzitkowski and A. Dymarek: Method of active and passive vibration reduction of synthesized bifurcated drive systems of machines to the required values of amplitudes, Journal of Vibroengineering, 17(4), (2015), 15-1592.
  • [9] M. Al-Dawod, B. Samali, and J. Li: Experimental verification of an active mass driver system on a five-storey model using a fuzzy controller. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 13(5), (2006), 917-943, DOI: 10.1002/stc.97.
  • [10] R. Guclu and H. Yazici: Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers, Journal of Sound and Vibration, 318(1-2), (2008), 36-49, DOI: 10.1016/j.jsv.2008.03.058.
  • [11] M. A. L. Yaghin, M. R. B. Karimi, B. Bagheri, and V. S. Balkanlou: Vibration control of multi degree of freedom structure under earthquake excitation with TMD control and active control force using fuzzy logic method at the highest and the lowest story of the building, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 8(5), (2013), DOI: 10.9790/1684-0850712.
  • [12] K. Ghaedi, Z. Ibrahim, H. Adeli, and A. Javanmardi: Invited Review: Recent developments in vibration control of building and bridge structures, Journal of Vibroengineering, 19(5), (2017), 3564-3580, DOI: 10.21595/jve.2017.18900.
  • [13] G. B. Warburton and E. O. Ayorinde: Optimum absorber parameters for simple systems, Earthquake Engineering & Structural Dynamics, 8(3), (1980), 197-217, DOI: 10.1002/eqe.4290080302.
  • [14] A. Y. T. Leung and H. Zhang: Particle swarm optimization of tuned mass dampers, Engineering Structures, 31(3), (2009), 715-728, DOI: 10.1016/j.engstruct.2008.11.017.
  • [15] G. C. Marano, G. Rita, and C. Bernardino: A comparison between different optimization criteria for tuned mass dampers design, Journal of Sound and Vibration, 329(23), (2010), 4880-4890, DOI: 10.1016/ j.jsv.2010.05.015.
  • [16] G. Bekdaş and S. M. Nigdeli: Estimating optimum parameters of tuned mass dampers using harmony search, Engineering Structures, 33(9), (2011), 2716-2723, DOI: 10.1016/j.engstruct.2011.05.024.
  • [17] Y. Shen, H. Peng, X. Li, and S. Yang: Analytically optimal parameters of dynamic vibration absorber with negative stiffness, Mechanical Systems and Signal Processing, 85 (2017), 193-203, DOI: 10.1016/j.ymssp.2016.08.018.
  • [18] X. R. Wang, Y. J. Shen, S. P. Yang, and H. J. Xing: Parameters optimization of three-element type dynamic vibration absorber with negative stiffness, Journal of Vibration Engineering, 30(2), (2017), 177-184.
  • [19] M. G. Soto and H. Adeli: Optimum tuning parameters of tuned mass dampers for vibration control of irregular highrise building structures, Journal of Civil Engineering and Management, 20(5), (2014), 609-620, DOI: 10.3846/13923730.2014.967287.
  • [20] X. Wang, X. Liu, Y. Shan, Y. Shen, and T. He: Analysis and optimization of the novel inerter-based dynamic vibration absorbers, IEEE Access, 6 (2018), 33169-33182, DOI: 10.1109/ACCESS.2018.2844086.
  • [21] Y. Hu, M. Z. Chen, Z. Shu and L. Huang: Analysis and optimization for inerter-based isolators via fixed-point theory and algebraic solution, Journal of Sound and Vibration, 346 (2015), 17-36, DOI: 10.1016/j.jsv.2015.02.041.
  • [22] Y. Shen, L. Chen, X. Yang, D. Shi, and J. Yang: Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension, Journal of Sound and Vibration, 361 (2016), 148-158, DOI: 10.1016/j.jsv.2015.06.045.
  • [23] P. Brzeski, T. Kapitaniak, and P. Perlikowski: Novel type of tuned mass damper with inerter which enables changes of inertance, Journal of Sound and Vibration, 349 (2015), 56-66, DOI: 10.1016/j.jsv.2015.03.035.
  • [24] O. Nishihara and T. Asami: Closed-form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude magnification factors), Journal of Vibration and Acoustics, 124(4), (2002), 576-582, DOI: 10.1115/1.1500335.
  • [25] T. Asami, O. Nishihara, and A. M. Baz: Analytical solutions to H∞ and H2 optimization of dynamic vibration absorbers attached to damped linear systems, Journal of Vibration and Acoustics, 124(4), (2002), 284-295, DOI: 10.1115/1.1456458.
  • [26] S. M. Nigdeli, G. Bekdaş, and C. Alhan: Optimization of seismic isolation systems via harmony search, Engineering Optimization, 46(11), (2014), 1553-1569, DOI: 10.1080/0305215X.2013.854352.
  • [27] S. M. Nigdeli and G. Bekdas: Performance comparison of location of optimum TMD on seismic structures, International Journal of Theoretical and Applied Mechanics, 3 (2018), 99-106.
  • [28] J. Osiowski: Theory of circuits, WNT, Warszawa, 1971 (in Polish).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e1afb7f-05c0-4ca3-bb93-e0d186629f53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.