PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the minirhizotron technique to studying the roots of fruit plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Minirhizotron, a non-destructive technique is based on the application of transparent tubes, located in plant’s root zone. This method has been known since the beginning of 20th century and is used for plant root’s observations, especially in forest trees (Scots pine, Norway spruce, silver fir, birch), steppe grasses, vegetables and cereals. Minirhizotron technique is also applicable to pomological plants observations, mostly apples, but many others orchard species were observed with this method last years. The study of root growth dynamics in fruit plants using the non-destructive, minirhizotron method is conducted in the Pomological Orchard in Skierniewice. The objects of the observations are the roots of: apple trees cultivar. ‘Gold Milenium’, blackcurrant bushes cultivar ‘Tiben’ and sweet cherry cultivar ‘Vanda’. The observations were carried out monthly over a period of from March to November.
Słowa kluczowe
Twórcy
autor
  • Research Institute of Horticulture, Pomological Department, Rhizosphere Lab, Konstytucji 3 Maja 1/3, 96-100 Skierniewice
autor
  • Research Institute of Horticulture, Pomological Department, Rhizosphere Lab, Konstytucji 3 Maja 1/3, 96-100 Skierniewice
autor
  • Research Institute of Horticulture, Pomological Department, Rhizosphere Lab, Konstytucji 3 Maja 1/3, 96-100 Skierniewice
autor
  • Research Institute of Horticulture, Pomological Department, Rhizosphere Lab, Konstytucji 3 Maja 1/3, 96-100 Skierniewice
autor
  • Warsaw University of Life Sciences – SGGW, The Faculty of Applied Informatics and Mathematics, Nowoursynowska 159, 02-776 Warsaw
Bibliografia
  • 1. Abrisqueta J.M., Mounzer O., Álvarez S., Conejero W., García-Orellana Y., Tapia L.M., Vera J., Abrisqueta I., Ruiz-Sánchez M.C.: Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation. Agricultural Water Management, 95, 2008: 959–967.
  • 2. Abod S.A., Webster A.D.: Root and shoot growth of newly-transplanted apple trees as affected by rootstock cultivar, defoliation and time after transplanting. Journal of Horticultural Science, 64, 1989: 655–666.
  • 3. Anderson L.J., Comas L.H., Lakso A.N., Eissenstat D.M.: Multiple risk factors in root survivorship: a 4-year study in Concord grape. New Phytologist, 158, 2003: 489–501.
  • 4. Baddeley J.A., Watson C.A.: Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium. Plant Soil, 276, 2005: 15–22.
  • 5. Basile B., Bryla D.R., Salsman M.L., Marsal J., Cirillo C., Scott Johnson R., DeJong T.M.: Growth patterns and morphology of fine roots of size-controlling and invigorating peach rootstocks. Tree Physiology, 27(2), 2007: 231–241.
  • 6. Bauerle T.L., Eissenstat D.M., Granett J., Gardner D.M., Smart D.R.: Consequences of insect herbivory on grape fine root systems with different growth rates. Plant, Cell and Environment, 30, 2007: 786–795.
  • 7. Bauerle T.L., Smart D.R., Bauerle W.L., Stockert C., Eissenstat D.E.: Root foraging in response to heterogeneous soil moisture in two grapevines that differ in potential growth rate. New Phytologist, 179, 2008: 857–866.
  • 8. Baumann D.L., Workmaster B.A., Kosola K.R. 2005. `Ben Lear’ and `Stevens’ cranberry root and shoot growth response to soil water potential. Hort-Science 40: 795–798.
  • 9. Böhm W.: Methods of studying root systems. in:Ecological studies vol. 33 Springer-Verlag Berlin, 1979: 1–188.
  • 10. Børja I., de Wit H.A., Steffenrem A., Majdi H.: Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway. Tree Physiology, 28, 2008: 773–784.
  • 11. Bouma T.J., Yanai R.D., Elkin A.D., Hartmond U., Flores-Alva D.E., Eissenstat D.M.: Estimating age-dependent costs and benefits of roots with contrasting life span: comparing apples and oranges. New Phytologist, 150, 2001: 685–695.
  • 12. Bryla D. R., Bouma T. J., Hartmond U., Eissenstat D.M.: Influence of temperature and soil drying on respiration of individual roots in citrus: integrating greenhouse observations into a predictive model for the field. Plant, Cell and Environment, 24, 2001: 781–790.
  • 13. Campbell C.D., Mackie-Dawson L.A., Reid E.J., Pratt S.M., Duff E.I., Buckland S.T.: Manual recording of minirhizotrons data and its application to study the effect of herbicide and nitrogen fertiliser on tree and pasture root growth in a silvopastoral system. Agroforestry Systems, 26, 1994: 75–87.
  • 14. Chen J.H., Barber S.A.: Soil pH and phosphorus and potassium uptake by maize evaluated with an uptake model. Soil Science Society of America Journal, 54, 1990: 1032–1036.
  • 15. Coleman M.D., Coyle D.R., Blake J., Britton K., Buford M., Campbell R.G., Cox J., Cregg B., Daniels D., Jacobson M., Johnsen K., McDonald T., McLeod K., Nelson E., Robison D., Rummer R., Sanchez F., Stanturf J., Stokes B., Trettin C., Tuskan J., Wright L., Wullschleger S. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses. United States Department of Agriculture. Forest Service. Southern Research Station. General Technical Report SRS–72: 21. http://entomology.wisc.edu/~dcoyle/pubs/Coleman_et_al_2004_GTR.pdf. 2004.
  • 16. Comas L.H., Eissenstat D.M., Lakso A.N.: Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytologist, 147, 2000: 171–178.
  • 17. Craine, J.M.: Competition for nutrients and optimal root allocation. Plant Soil, 285, 2006: 171–185.
  • 18. Eissenstat D.M.: Cost and benefits of constructing roots of small diameter. J. Plant Nutr., 1, 1992:763–782.
  • 19. Eissenstat D.M., Bauerle T.L., Comas L.H., Lakso A.N., Neilsen D., Neilsen G.H., Smart D.R.: Seasonal patterns of root growth in relation to shoot phenology in grape and apple. Proc. Vth IS on Mineral Nutrition of Fruit Plants. Eds. J.B. Retamales and G.A. Lobos. Acta Hort., 721, 2006: 21–26.
  • 20. Eissenstat D.M., Wells C.E., Yanai R.D., Whitbeck J.L.: Building roots in a changing environment: mplications for root longevity. New Phytologist, 147, 2000: 33–42.
  • 21. Eissenstat D.M., Wells C.E., Wang L.: Root efficiency and mineral nutrition in apple. Acta Hort., 564, 2001: 165–184.
  • 22. Eizenberg H., Hershenhorn J., Ephrath J.E.: Factors affecting the efficacy of Orobanche cumana chemical control in sunflower. Weed Research, 49, 2009: 308–315.
  • 23. Gao S., Pan W.L., Koenig R.T. Integrated root system age in relation to plant nutrient uptake activity. Agronomy J., 90, 1998: 505–510.
  • 24. Gavito M.E., Curtis P.S., Jakobsen I.: Neither mycorrhizal inoculation nor atmospheric CO2 concentration has strong effects on pea root production and root loss. New Phytologist, 149, 2001: 283–290.
  • 25. Głuszek S., Sas Paszt L.: Pierwsze w Polsce badania korzeni porzeczki czarnej odmiany ‘Tiben’ z użyciem techniki minirizotronów. Ogólnopolska Naukowa Konferencja Ekologiczna ‘Perspektywy rozwoju ekologicznej produkcji ogrodniczej’, 6-7.10.2011 Skierniewice 2011: 125–128.
  • 26. Głuszek S., Sas Paszt L., Jadczuk Tobjasz E., Molska K., Sumorok B.: Innowacyjne badania korzeni czterech odmian wiśni z użyciem techniki minirizotronów. http://www.inhort.pl/files/ekotechprodukt/prezentacje_wynikow/konf_ekol_mater_2011/postery_konf_ekol_2011.pdf, 2011.
  • 27. Heeraman D.A., Crown P.H., Juma N.G.: A color composite technique for detecting root dynamics of barley (Hordeum vulgare L.) from minirhizotron images. Plant Soil, 157, 1993: 275–287.
  • 28. Hendrick R. L., Pregitzer K. S.: Applications of minirhizotrons to understand root function in forests and other natural ecosystems. Plant Soil, 185, 1996a: 293–304.
  • 29. Hendrick R. L., Pregitzer K. S.: Temporal and depthrelated patterns of fine root dynamics in northern hardwood forests. J. Ecol., 84, 1996b: 167–176.
  • 30. Hendricks J.J., Hendrick R.L., Wilson C.A., Mitchell R.J., Pecot S.D., Guo D.: Assessing the patterns and controls of fine root dynamics:an empirical test and methodological review. J. Ecol., 94, 2006: 40–57.
  • 31. Hodge A.: Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytologist, 151, 2001: 725–734.
  • 32. Johnson M. G., Tingey D. T., Phillips D. L., Storm M. J.: Advancing fine root research with minirhizotrons. Environmental and Experimental Botany, 45, 2001: 263–289.
  • 33. Joslin J.D., Henderson G.S.: A test of the budget method: a refined approach to the measurement of the root turnover. Fourth Central Hardwood Forest Conference, 8-10 Nov. 1982, Ed. R N Muller. University of Kentucky, Lexington, USA., 1982: 220–228.
  • 34. Kosola K.R., Dickmann D., Parry D. Carbohydrates in individual poplar fine roots: effects of root age and defoliation. Tree Physiology, 22, 2002: 741–746.
  • 35. Kosola K.R., Eissenstat D.M., Grahm J.H.: Root demography of mature citrus trees: the influence of Phytophthora nicotianae. Plant Soil, 171, 1995:283–288.
  • 36. Kristensen H.L., Thorup-Kristensen K.: Effects of vertical distribution of soil inorganic nitrogen on root growth and subsequent nitrogen uptake by field vegetable crops. Soil Use and Management, 23, 2007: 338–347.
  • 37. Lehmann J, Zech W.: Fine root turnover of irrigated hedgerow intercropping in northern Kenya. Plant Soil, 198, 1998: 19–31.
  • 38. Lehnart R, Michel H.,. Löhnertz O., Linsenmeier A.: Root dynamics and pattern of ‚Riesling’ on 5C rootstock using minirhizotrons. Vitis, 47(4), 2008: 197–200.
  • 39. Lindhard Pedersen H.: Covercrops in blackcurrant. Acta Hort., 585, 2002: 633–638.
  • 40. Linsenmeier A., Lehnart R., Löhnertz O., Michel H.: Investigation of grapevine root distribution by in situ minirhizotron observation. Vitis, 49(1), 2010: 1–6.
  • 41. Lipa T.: Właściwości fizyczne gleb a system korzeniowy roślin matecznych podkładek wegetatywnych Jabłoni. Acta Agrophysica, 15(1), 2010:135–143.
  • 42. Machado R.M.A., Oliveira M.R.G. 2003. Comparison of tomato root distributions by minirhizotron and destructive sampling. Plant Soil 255: 375–385.
  • 43. Machado R.M.A., Oliveira M.R.G.: Tomato root distribution, yield and fruit quality under different subsurface drip irrigation regimes and depths. Irrigation Science, 24, 2005: 15–24.
  • 44. Majdi H.: Root sampling methods – applications and limitations of the minirhizotron technique. Plant Soil, 185, 1996: 255–258.
  • 45. McKenzie B.E., Peterson C.A.: Root browning in Pinus banksiana Lamb. and Eucalyptus pilularis Sm. 1. Anatomy and permeability of the white and tannin zones. Botanica Acta, 108, 1995: 127–137.
  • 46. Nygaard P.H., de Wit H.A.: Effects of elevated soil solution Al concentrations on fine roots in a middle-aged Norway spruce (Picea abies (L.) Karst.) stand. Plant Soil, 265, 2004: 131–140.
  • 47. Persson H., Ahlström K.: Fine-root response to nitrogen supply in nitrogen manipulated Norway spruce catchment areas. For. Ecol. Manage., 168, 2002: 29–41.
  • 48. Persson H., Von Fircks Y., Majdi H., Nilsson L.- O.: Root distribution in a Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium-sulfate application. Plant Soil, 169, 1995: 161–165.
  • 49. Pregitzer K.S., Kubiske M.E., Yu C.K., Hendrick R.L.: Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia, 111, 1997: 302–308.
  • 50. Pritchard S.G., Strand A.E. , McCormack M. L., Davis M.A., Oren R.: Mycorrhizal and rhizomorph dynamics in a loblolly pine forest during 5 years of free-air-CO2-enrichment. Global Change Biology, 14, 2008: 1–13.
  • 51. Quartieri M., Castellani G., Baldi E., Marangoni B.,Tagliavini M.: Fine roots growth and longevity in a high-density pear orchard on Quince C rootstock as affected by nitrogen supply . Acta Hort., 868, 2010: 149–154.
  • 52. Samson B.K., Sinclair T.R.: Soil core and minirhizotron comparison for the determination of root length density. Plant Soil, 161, 1994: 225–232.
  • 53. Sas Paszt L., Głuszek S.: Nowoczesne metody w badaniach rizosfery roślin sadowniczych. Postępy Nauk Rolniczych, nr 5, 2007a: 51–63.
  • 54. Sas Paszt L., Głuszek S.: Rola korzeni oraz rizosfery we wzroście i plonowaniu roślin sadowniczych. Postępy Nauk Rolniczych, 6, 2007b: 27–39.
  • 55. Sas Paszt L., Żurawicz E.: Studies of the Rhizosphere of Strawberry Plants at the Research Institute of Pomology and Floriculture in Skierniewice, Poland. International Journal of Fruit Science, 5, 2006: 115–126.
  • 56. Smart D.R., Stockert C., Bauerle T., Carlisle E., Goebel M.: Artifacts of grapevine root proliferation following installation of minirhizotron observation tubes. Acta Hort., 689, 2005: 153–158.
  • 57. Smethurst P., Commerford N.: Simulating nutrient uptake by single or competing and contrasting root systems. Soil Science Soc. Am. J., 57, 1993:1361–1367.
  • 58. Szewczuk A., Dereń D., Gudarowska E.: Wpływ nawadniania kroplowego na rozmieszczenie korzeni drzew jabłoni sadzonych tradycyjnie i ’w redliny’. in: Infrastruktura i ekologia terenów wiejskich. Wyd. PAN Kraków Nr 3, 2009: 151–158.
  • 59. Tanner S.C., Reighard G.L. Wells C.E.: Soil treatments differentially affect peach tree root development and demography in a replant site. Acta Hort., 713, 2006: 381–390.
  • 60. Taylor H.M., Upchurch D.R., McMichael B.L.: Applications and limitations of rhizotrons and minirhizotrons for root studies. Plant Soil, 129, 1990: 29–35.
  • 61. Teo Y.H., Beyrouty C.A., Gbur E.E.: Evaluation of a model to predict nutrient uptake by field-grown rice. Agronomy J., 87, 1995: 7–12.
  • 62. Tierney G.L., Fahey T.J.: Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest. Plant Soil, 229, 2001: 167–176.
  • 63. Treseder K.K., Allen M.F., Ruess R.W., Pregitzer K.S., Hendrick R.L.: Lifespans of fungal rhizomorphs under nitrogen fertilization in a pinyonjuniper woodland. Plant Soil, 270, 2005: 249–255.
  • 64. Treseder K.K., Turner K.M., Mack M.C.: Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. Global Change Biology, 13, 2007:78–88.
  • 65. Valenzuela-Estrada L.R., Vera-Caraballo V., Ruth L.E., Eissenstat D.M.: Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). American Journal of Botany, 95, 2008: 1506–1514.
  • 66. Weisbein S., Weisman Z., Ephrath Y., Silberbush M.: Vegetative and reproductive response of olive cultivars to moderate saline water irrigation. Hort-Science, 43. 2008: 320–327
  • 67. Wells C.E., Eissenstat D.M.: Marked differences in survivorship among apple roots of different diameters. Ecology 82(3), 2001: 882–892.
  • 68. Wells C.E., Eissenstat D.M.: Beyond the roots of young seedlings: the influence of age and order on fine root physiology. J. Plant. Growth Regul., 21, 2003: 324–334.
  • 69. Wells C.E., Glenn D. M., Eissenstat D.M.: Changes in the risk of fine-root mortality with age: a case study in peach, Prunus persica (Rosaceae). Am. J. of Bot., 89(1), 2002a: 79–87.
  • 70. Wells C.E., Glenn D. M., Eissenstat D.M.: Soil insects alter fine root demography in peach (Prunus persica). Plant, Cell and Enviroment, 25, 2002b:431–439.
  • 71. Yao S., Merwin I.A., Brown M.G.: Root dynamics of apple rootstocks in a replanted orchard. Hort-Science 41, 2006: 1149–1155.
  • 72. Zeng G., Birchfield S.T., Wells C.E.: Automatic discrimination of fine roots in minirhizotron images. New Phytologist, 177, 2008: 549–557.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e17cfa7-0d93-402e-8e30-556733c3c9a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.