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Abstract: We consider a formulation of the Cauchy problem for the Kolmogorov equation

which corresponds to a localized source of particles to be scattered by a medium with

a given scattering amplitude density. The multiple scattering amplitudes are introduced and

the corresponding series solution of the equation is constructed. We investigate the integral

representation for the first series terms, its estimations and values of the photon number of

finite and point receivers. Application to the LIDAR problem and X-ray beam scattering for

orthogonal and inclined to a layer is considered.
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1. Introduction

We study the modeling of photon beam propagation through a layer, ne-

glecting the photons phase that excludes such wave phenomena as total reflec-

tion [1] or focusing [2]. In such context the propagation of electromagnetic waves,

such as X-ray, may be interpreted via two phenomena: absorption and scattering

of the corresponding photons. Absorption of electromagnetic radiation is the way

in which the energy of a photon is taken up by the matter, typically the elec-

trons of an atom. Thus, the electromagnetic energy is transformed into internal

energy of the absorber, for example, thermal energy. Scattering is a process in

which moving particles or waves are forced to deviate from a straight trajectory

by one or more paths due to localized non-uniformities in the medium through

which they pass. Scattering phenomena can be divided into two classes: elastic
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and non-elastic. In the elastic process the photon energy is conserved while in

the non-elastic it is not. Rayleigh scattering is an example of elastic scattering.

Non-elastic scattering has very low influence in X-ray propagation, therefore, it

will be ignored in this work. The simple model used in this theory to represent

the light-matter interaction is a crude assumption that avoids getting inside the

actual complexity of the phenomena of light-matter interaction, taking into ac-

count elastic scattering and absorption and it has the advantage of leading to

relatively simple analytical solutions for photon propagation valid for many real

media. The light-matter interaction is characterized by several phenomena that

will be neglected in the consideration since they may affect the results of the in-

vestigations but could be taken into account by direct development of the theory.

Scattering phenomena have been studied in LIDAR (Light Detection and Ranging)

problems since the 70s. A LIDAR works similarly to a radar. A laser shots short

impulses of light in a certain direction that is scattered by a medium (atmosphere,

glass, water, etc.). Then, a telescope collects the light that is scattered back and

a gauge inside the apparatus measures the intensity of that light. One of the first

mathematical descriptions is found in the works of [3]. The backscattering and

absorption phenomena are modeled by the linearized Boltzmann equation, that

in fact is a version of the Kolmogorov equations [4], the diffusion-term version

named as Fokker-Planck (Kolmogorov forward) equations [5]. The derivation on

the quantum base is given in [6]. Studies about the backscattering of a pulse

emitted to the atmosphere through Monte Carlo simulations have been carried

out by [7], [8], and [9]. Double scattering has been studied in the work [10]. More

recent work using the Monte Carlo approach has been conducted by [11] who has

studied the contribution of multiple scattering in the pulse stretching. A cloudy

sky, fog or rain have been considered for the simulations. A problem of mono

energetic particles pulse reflection from a half-infinite stratified medium is con-

sidered in the conditions of elastic scattering with an absorption account in the

article [12]. More recent articles on the LIDAR sounding of atmosphere like [13]

reveal interest in the related direct and inverse problems of today [14].

In this article the scattering/absorption phenomena are modeled by the

Kolmogorov equation. It is applied to a LIDAR problem and to a mono-energetic

X-ray particle pulse propagating in the free space, reaching a layer of a metal

and next going through the free space again arriving at a cylindrical detector.

We simplify the problem taking the speed of the electromagnetic waves to be

constant through air and inside the layer, neglecting the corresponding delay.

The theory is based on the multiple scattering series solution of the Kolmogorov

equation for the one-particle distribution function [12] see also [15]. Whereas it

is the backscattering that is considered in the cited articles, in this work we will

focus on the forward or some nonzero angle scattering [16]. The main purpose

of this paper is, by means of laboratory experimental data on the differential

and total cross section [17], to obtain expressions for the intensity arriving at the

detector after one-scattering phenomena [18]. The initial condition will be a point

pulse source.
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2. Problem formulation

The equation for the probability density f = f(t′,~r,~v) has the following

form:
1

c
[∂t′f+~v ·∇f ] =−σtot(z)f−

∫

σscat(cosγ,z)f dΩ
′ (1)

where t′-time, dΩ′ = sinθ′dθ′dφ′ – solid scattering angle, σ – bulk differential

cross-section of elastic scattering to the angle γ; σtot – the sum of
∫

σscatdΩ+σabs,

scattering and absorption total cross-sections of elastic scattering, and

~v

c
=(sinθcosφ,sinθsinφ,cosθ) (2)

– velocity components. Equation (1) is derived from the Kolmogorov equation

and has been taken from [12]. In spherical coordinates: r,θ,φ the scattering angle

is expressed as

cosγ=cosθcosθ′+sinθsinθ′ cos(φ−φ′) (3)

where θ′ and φ′ are the angles after the scattering occurs. We suppose that the

scattering is elastic, |~v| does not change while the scattering process occurs. The

initial conditions are represented by the distributions

f(0,x,y,z)=V δ(x)δ(y)δ(z)δ(θ−θ0) (4)

which means that an initial pulse is emitted from position (x,y,z) = (0,0,0) at

a certain direction θ= θ0. V represents the number of photons emitted from the

source. We will consider the parameter V = 1
2π , so that the function f can be

interpreted as a density probability function.

It means that we build a solution for the probability density as a weak limit

(when t′→ 0) to δ-function at t′> 0. The distribution δ(θ−θ0) is chosen as

(

δ(θ−θ0),ψ(θ,φ)
)

=

∫ 2π

0

ψ(θ0,φ)dφ (5)

The definition of the action of function f on function ψ in x,y,z coordinates from

the Shwartz space is standard.

3. Solution for the modeling equation

3.1. Solution for 0 angle initial pulse

Let us start with a simple example of zero initial angle θ0 = 0. Denote

t= ct′ and c the speed of light in air. This makes a unit of space and a unit of

time equivalent. A solution is searched as an multiple scattering expansion

f = f0+f1+f2+ . . . (6)

We are interested in single scattering, i.e., the approximation f = f0+f1 For f0
we choose

Lf0=
∂f0
∂t
+sinθcosφ

∂f0
∂x
+sinθsinφ

∂f0
∂y
+cosθ

∂f0
∂z
=−σtot(z)f0 (7)
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and the initial condition

f0(0,x,y,z)=V δ(x)δ(y)δ(z)δ(θ) (8)

To find the equation for f1 from (1) we write

Lf0+Lf1=−σtot(z)(f0+f1)−

∫

σscat(cosγ,z)(f0+f1)dΩ
′ (9)

We know from (7) Lf0=−σtot(z)f0, then

Lf1=−σtot(z)f1−

∫

σscat(cosγ,z)f0dΩ
′ (10)

with the initial condition

f1|t=0=0 (11)

Let us change the variables in (7) to solve the equation:

x′=x− tsinθcosφ (12a)

y′=y− tsinθsinφ (12b)

z′=z− tcosθ (12c)

t′=t (12d)

Therefore:

∂

∂x
=
∂x′

∂x

∂

∂x′
=

∂

∂x′

∂

∂y
=
∂y′

∂y

∂

∂y′
=

∂

∂y′

∂

∂z
=
∂z′

∂z

∂

∂z′
=

∂

∂z′

∂

∂t
=
∂x′

∂t

∂

∂x′
+
∂y′

∂t

∂

∂y′
+
∂z′

∂t

∂

∂z′
+
∂t′

∂t

∂

∂t′
=

=−sinθcosφ
∂

∂x′
−sinθsinφ

∂

∂y′
−cosθ

∂

∂z′
+

∂

∂t′

(13)

Equation (7) is transformed to

∂f0
∂t′
=−σtot(z

′+ t′ cosθ)f0

f0=K(x
′,y′,z′)exp

[

−

∫ t′

0

σtot(z
′+τ cosθ)dτ

] (14)

Going back to the old variables:

f0=K(x− tsinθcosφ,y− tsinθsinφ,z− tcosθ)·

·exp

[

−

∫ t

0

σtot(z− tcosθ+τ cosθ)dτ

]

(15)

Let us remark a useful fact

exp

[

−

∫ t

0

σtot
(

z−(t−τ)cosθ
)

dτ

]

=exp

[

−

∫ t

0

σtot(z−τ cosθ)dτ

]

(16)
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Denote function E via

E(t,z,θ)= exp

[

−

∫ t

0

σtot(z−τ cosθ)dτ

]

(17)

Using the initial condition (4) with V = 1
2π , the expression for f0 is:

f0=
1

2π
δ(x− tsinθcosφ)δ(y− tsinθsinφ)δ(z− tcosθ)δ(θ)·

·exp

[

−

∫ t

0

σtot
(

z−(t−τ)cosθ
)

dτ

] (18)

which, taking in account that the expression will not vanish only if θ=0, simplifies

as:

f0=
1

2π
δ(x)δ(y)δ(z− t)δ(θ)exp

[

−

∫ t

0

σtot
(

z−(t−τ)
)

dτ

]

. (19)

f0=
1

2π
δ(x)δ(y)δ(z− t)δ(θ)E(t,z,0). (20)

This expression would be slightly different if the change of the speed of light in

different media were taken in account. Now, once we know f0, we have to solve

equation (10). We use the same change of variables (12) to transform equation (10)

into

f1 exp

(

∫ t′

0

σtot(z
′+τ2 cosθ)dτ2

)

=−

∫ t′

0

exp

(
∫ τ

0

σtot(z
′+τ2 cosθ)dτ2

)

·

·

∫

σscat(cosγ,z
′+τ cosθ)f0(τ,x

′,y′,z′,θ)dΩ′dτ+C1

(21)

From the initial conditions we conclude that C1=0

f1=V

∫ t′

0

exp

(

−

∫ t′

τ

σtot(z
′+τ2 cosθ)dτ2

)

·

·

∫

σscat(cosθ
′,z′+τ cosθ)E(τ,z′+τ cosθ,0)·

·δ(x′+τ sinθcosφ)δ(y′+τ sinθsinφ)δ(z′+τ cosθ−τ)δ(θ′)dΩ′dτ

(22)

Transformation to the original variables, taking into account (5)

f1=2π

∫ t

0

exp

(

−

∫ t

τ

σtot(z−(t−τ2)cosθ)dτ2

)

·

·E(τ,z−(t−τ)cosθ,0)σscat(cosθ,z−(t−τ)cosθ)·

·V δ(x−(t−τ)sinθcosφ)δ(y−(t−τ)sinθsinφ)δ(z−(t−τ)cosθ−τ)dτ

(23)

after simplification

f1=

∫ t

0

E(τ,z,θ)·

·E(t−τ,z−τ cosθ,0)σscat(cosθ,z−τ cosθ)·

·V δ(x−τ sinθcosφ)δ(y−τ sinθsinφ)δ
(

z−τ cosθ−(t−τ)
)

dτ

(24)
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Integrations by θ,φ,τ are understood as integrations of the distribution by these

parameters. For example, by definition (38) f1 acts on function ψ from the

Schwartz space as

(

f1(t,x,y,z,θ,φ),ψ(x,y,z)
)

=

∫ t

0

E(τ,τ cosθ+ t−τ,θ)·

·E(t−τ,t−τ,0)σ(cosθ,t−τ)·

·ψ(τ sinθcosφ,τ sinθsinφ,τ cosθ+ t−τ)dτ

(25)

The function ψ will be used to determine the position, size and configuration of

the receiver.

3.2. Initial condition for non-zero angle initial pulse

In the problem formulation we considered a pulse emitted from the source

in direction θ=0. We will also discuss the problem with an initial condition for

different small angles of an initial direction of θ= θ0 of the pulse:

f(0,x,y,z)=V δ(x)δ(y)δ(z)δ(θ−θ0) (26)

3.3. Solution for non-zero angle initial pulse

Proceeding the same way as before we get a solution of f0 with the initial

condition

f(0,x,y,z)=V δ(x)δ(y)δ(z)δ(θ−θ0) (27)

We take the general solution for probability – normalized f0

f0=
1

2π
δ(x− tsinθcosφ)δ(y− tsinθsinφ)δ(z− tcosθ)δ(θ−θ0)·

·exp

[

−

∫ t

0

σtot
(

z−(t−τ)cosθ
)

dτ

] (28)

Which, taking in account (17) and that the expression will not vanish only if

θ= θ0, simplifies to:

f0=
1

2π
δ(x− tsinθ0 cosφ)δ(y− tsinθ0 sinφ)δ(z− tcosθ0)δ(θ−θ0)E(t,z,θ0) (29)

or, going back to θ0=0, yields

f0=
1

2π
δ(x)δ(y)δ(z− t)δ(θ)E(t,z,0) (30)

The equation for f1 in transformed variables (12)

f1t′ =−σtot(z
′+ t′ cosθ)f1−

∫

σscat(cosγ,z
′+ t′ cosθ)·

·f0(t
′,x′+ t′ sinθcosφ,y′+ t′ sinθsinφ,z′+ t′ cosθ,θ)dΩ′

(31)

with the initial condition

f1
∣

∣

t=0
=0 (32)
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Integrating yields

f1 exp

(

∫ t′

0

σtot(z
′+τ ′ cosθ)dτ ′

)

=−

∫ t′

0

exp

(
∫ τ

0

σtot(z
′+τ ′ cosθ)dτ ′

)

·

·

∫

σscat(cosγ,z
′+τ cosθ)·

·f0(τ,x
′+τ sinθcosφ,y′+τ sinθsinφ,z′+τ cosθ,θ)dΩ′dτ

(33)

Solution f1 for these initial conditions with the original variables is

f1=−E(t,z,θ)

∫ t

0

exp

(
∫ t

t−τ

σtot(z−τ
′′ cosθ)dτ ′′

)

·

·

∫

σscat(cosγ,z−(t−τ)cosθ)·

·f0(τ,x+(t−τ)sinθcosφ,y
′+(t−τ)sinθsinφ,z−(t−τ)cosθ,θ)dΩ′dτ

(34)

Changing the variables of integration t−τ = τ ′ and omitting the primes

f1=−

∫ t

0

E(τ,z,θ)·

·

∫

σscat(cosθcosθ
′+sinθsinθ′ cos(φ−φ′),z−τ cosθ)·

·f0(t−τ,x−τ sinθcosφ,y−τ sinθsinφ,z−τ cosθ,θ)dΩ
′dτ

(35)

Plugging the point pulse (29) yields

f1=−
1

2π

∫ t

0

E(τ,z,θ)E(t−τ,z−τ cosθ,θ)·

·

∫

σscat(cosθcosθ
′+sinθsinθ′ cos(φ−φ′),z−τ cosθ)·

·
1

2π
δ(x−τ sinθcosφ)δ(y−τ sinθsinφ)δ(z−τ cosθ)δ(θ−θ0)dΩ

′dτ

(36)

or, taking into account independence of the indicatrix σscat on φ
′ and the δ(θ−θ0)

definition

f1=−

∫ t

0

E(τ,z,θ0)E(t−τ,z−τ cosθ0,θ0)·

·

∫ π

0

σscat(cosθ0 cosθ
′,z−τ cosθ0)·

·δ(x−τ sinθ0 cosφ)δ(y−τ sinθ0 sinφ)δ(z−τ cosθ0)δ(θ−θ0)sinθ
′dθ′dτ

(37)

The distribution action for the cylindrical symmetry is evaluated as

(f1,ψ)=−

∫ t

0

E(τ,z,θ0)E(t−τ,z−τ cosθ0,θ0)·

·

∫ π

0

σscat(cosθ0 cosθ
′,z−τ cosθ0)·

·ψ(τ sinθ0 cosφ,τ sinθ0 sinφ,τ cosθ0)sinθ
′dθ′dτ

(38)
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4. Particle number rate

4.1. Particle number rate for θ0 angle initial pulse

Generally [3], the probabilistic interpretation of the distribution function f

in the phase space gives the number of particles in a small volume ∆x∆y∆z as

2π
∫

0

π
∫

π−θ0

x+∆x
∫

x

y+∆y
∫

y

z+∆z
∫

z

f dxdydz sinθdθdφ (39)

For a point receiver at x,y,z it is found as a limit

I(t,x,y,z)= lim
∆x→0,∆y→0,∆z→0

2π
∫

0

π
∫

π−θ0

x+∆x
∫

x

y+∆y
∫

y

z+∆z
∫

z

f dxdydz sinθdθdφ (40)

here an aperture angle θ0, that restricts possible velocities of particle directions

is introduced.

Whereas in the LIDAR problem the receiver is placed at the origin [3], in our

problem it is placed at a certain distance after the scatterer layer. We will place

the receiver at the position (x,y,z)= (0,0,z0) and the layer at z ∈ [
z0
2 −∆,

z0
2 +∆],

being 2∆ of the layer’s thickness. Our aim is the evaluation of the number of

particles which enter the round area of radius ρ0 laying in the plane z = z0
(receiver) with the center in the origin and having the velocity vectors inclined to

z-axis within the angle interval θ ∈ [0,α]. The angle α relates the aperture angle

of a receiver. In its direct sense, the number is proportional to the number of

particles (photons) per unit time and the volume is given by the general relation

I(t)= lim
∆t→0

1

∆t

α
∫

0

2π
∫

0

(

f(t,0,0,z0,θ,φ),ψ(x,y,z,θ,φ)
)

sinθdφdθ. (41)

The choice of function ψ can be realized by concrete physical reasons. In the

exemplary case we take here, the receiver has cylindrical symmetry and the

function does not depend on θ, φ for the initial direction along z, so the value

chosen is zero outside the receiver, and ψ(x,y,z) = 1 for internal points of the

domain x2+y2 ≤ ρ20, z0 ≤ z ≤ z0+∆t|cosθ| and zero outside, being z0 the

coordinate and |z0| of the distance between the source of the pulse and the receiver.

Therefore, we get for (10)

I1(t,0,0,z0)=− lim
∆t→0

lim
ρ0→0

z0+cosθ0∆t
∫

z0

2π
∫

0

ρ0
∫

0

α
∫

0

t
∫

0

E(τ,z0,θ)·

·

∫

σscat(cosθcosθ
′,z−τ cosθ)·

·f0(t−τ,x−τ sinθcosφ,y−τ sinθsinφ,z−τ cosθ,θ)sinθ
′dθ′dτ dθdρdφdz

(42)
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We make the evaluation of single scattering by (38) for a point receiver as the

limit:

I1(t)=− lim
∆t→0

lim
ρ0→0

1

∆t

ρ0
∫

0

α
∫

0

t
∫

0

z0+cosθ0∆t
∫

z0

E(τ,z,θ0)E(t−τ,z−τ cosθ0,θ0)·

·

∫

σscat(cosθ0 cosθ
′,z−τ cosθ0)·

·ψ(τ sinθ0 cosφ,τ sinθ0 sinφ,τ cosθ0)sinθ
′dθ′dτ dφdρdz

(43)

The nonzero I1 values are obtained under conditions that are explained Figure 1.

The area of integration lies between the horizontal lines z = z0,z0+∆z and the

inclined lines z = cosθ0+a and z = cosθ0+ b, where a, b are the boundaries of

a “cloud” or metal plate. The vertical line marks the pulse arrival time z= t.

Figure 1. The figure explains conditions of nonzero contribution into intensity

In the case of fixed angle θ0, z
′= τ(cosθ0−1)+ t, τ =(cosθ0−1)

−1(z′− t),

hence the argument of the δ-function is z0+ t−τ−z
′= z0+ t−(cosθ0−1)

−1(z′−

t)−z′ = z0− bt+az
′ = a(z′− ba )t+z0/a, where a=−1− (cosθ0−1)

−1 = cosθ0
1−cosθ0

,

b = 1+ (cosθ0− 1)
−1. The second argument of the scattering amplitude σs is

therefore z0−τ cosθ0= z0−(cosθ0−1)
−1(z′− t)cosθ0.

The result for the zero angle for the point receiver is almost trivial from the

geometrical point of view, the arriving pulse is infinitely short. The expression

for intensity contains natural spherical divergence, exponential decay due to

absorption and forward scattering at a level inside the layer. Some details may be

found in the ArXive paper [19].

4.2. Modeling σscat and σtot from experimental data

Let us consider now the scattering in a homogeneous layer of a given

material. It is possible to understand the situation better by looking at the picture

(Figure 2).
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Figure 2. Modeled situation σ=σ(1,z)

Depending on the X-ray energy and the material of the layer, we will have

different functions for σscat. First, let us consider a simple case (Figure 3). For

cosγ=1

σscat(cosγ,z)=







0 z≤ z02 −∆
σ0

z0
2 −∆<z <

z0
2 +∆

0 z≥ z02 +∆
(44)

σtot(z)=







0 z≤ z02 −∆
σ1

z0
2 −∆<z <

z0
2 +∆

0 z≥ z02 +∆
(45)

Figure 3. Proposed σscat(1,z)
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The total attenuation cross section σtot can be divided into two terms: the

scattering total cross section
∫ π

0
σscat and the absorption total cross section σabs.

To model σtot =
∫ π

0
σscat(cosγ,z)dγ+σabs, let us first consider some theory. The

attenuation Lambert-Beer law states:

I = I0e
−µz (46)

where µ is the attenuation coefficient. In the next Figure 4 we can see how the

intensity of the X-ray beam decreases as it penetrates a layer of beryllium.

Figure 4. Beryllium intensity attenuation

Now, µ is defined as

µ= ρaσtot= ρ
N0
A
σtot (47)

where ρatom = ρ
N0
A is the atomic density, N0 is Avogadro’s number, A is the

atomic mass number and ρ is the density (g/m3).

σtot=
Aµ

ρN0
(48)

On the other hand, the Rayleigh scattering cross section σscat expression taken

from [20] is

σscat=πr
2
e

∫ 1

−1

(1+cos2γ)f2(q,Z)d(cosγ) (49)

where re is the electron radius, γ is the scattering angle, 2πd(cosγ) is the solid

angle between cones with angles γ and γ+dγ, f(q,Z) is the atomic scattering
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factor, q is sinγ/2λ , the momentum transfer parameter, and λ is the wavelength

expressed in Å.

Next you can see the plots of the experimental data for the atomic scattering

factor f(q,Z) for beryllium. We will consider the values for the total photon

interaction cross section for beryllium from the tables of [20]. We are interested in

beryllium due to its properties and feasible applications. The values in the table

refer also the Compton scattering, i.e., σtot= σRayleigh+σCompton+σa. However,

we will not talk about the Compton scattering as it is sometimes neglected due

to its low influence in the X-ray scattering.

Figure 5. Atomic scattering factor for beryllium

Table 1. Scattering for Be

Radiation Energy [KeV] σatom
[

barns
atom

]

Ag Kβ1 24.94 2.97

Zn K−α 8.63 13.8

Mn K−α 5.895 39.9

As can be seen in the table the total cross section is given in barns/atom

units. We should normalize it per unit volume, i.e. cm−1.

σtot=Nσatom where N =
ρN0
A

[

cm−1
]

=σtot=
ρN0σatom10

−22

A
=

[

atom
mol

g
cm3

cm2

atom
g
mol

]

=
[

cm−1
]

(50)

For beryllium ρ = 1.85 gcm3 , A = 9.01 and σatom = 2.97 for energy radiation of

24.94KeV.
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4.3. Intensity plots

The following plots will be made taking in account a layer of beryllium of

thickness 2∆ in the half way from the source to the receiver, i.e, at the range
z0
2 −∆ ≤ z ≤

z0
2 +∆. We will plot the results of the single scattering approach

with the θ0 angle initial pulse. The intensity plot comes from formula (42). The

total cross-section dependence on z we model as

σtot(z)=







0 z≤ z02 −∆
ρN0
A σatom

z0
2 −∆<z <

z0
2 +∆

0 z≥ z02 +∆
(51)

ρ=1.85 gcm3 , the density of beryllium, A=9.01 the beryllium atomic mass number,

σatom=2.97 and N0, Avogadro’s number. For the scattering cross section we used

the function fitted to the atomic scattering factor of beryllium from Figure 5. We

can see both the data and fitted function in the next figure

σscat(cosγ,z)=

{

e1.2238(cosγ)
8

−1 z ∈ ( z02 −∆,
z0
2 +∆)

0 z /∈ ( z02 −∆,
z0
2 +∆)

(52)

Figure 6. The data function is shown in black; the fitted function – in red

To plot the intensities we will consider the thickness of the beryllium layer

2∆. The resulting formula for the point receiver intensity has direct geometrical

interpretation (see Figure 7) As it is marked in the plot, the total time for the

photon arrival is t= t1+ t2=
z

cosϑ0
+ z0−zcosβ .
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Figure 7. Trajectories of scattered photons from minimal to maximum scattering angles

The angle is evaluated via

tanβ=
z tanϑ0
z0−z

(53)

and

cosβ=

√

1

1+tan2β
=

√

1

1+( z tanϑ0z0−z
)2
=

√

(z−z0)
2

z2 tan2ϑ0+z2−2zz0+z20
(54)

Let us define

t=
z

cosϑ0
+

z0−z
√

(z−z0)
2

z2 tan2ϑ0+z2−2zz0+z20

(55)

Thus the expression of the scattering point height via time t is

z=
1

2tcosϑ0−2z0 cos2ϑ0

(

t2 cos2ϑ0−z
2
0 cos

2ϑ0
)

=
1

2
(cosϑ0)(t−z0)

t+z0
t−z0 cosϑ0

(56)

with the correspondent cosβ and sinβ expressions. Recall that

cosγ=cosβ cosϑ0−sinβ sinϑ0 (57)

The relative intensity formula also corresponds to its geometrical sense with

spherical divergence

I

I0
∼
1

(t2)
2 exp[−σt(t3+ t4)]σ(cosγ,z) (58)

where

t3=
z− z02 +∆

cosϑ0
and t4=

−z+ z02 +∆

cosβ
(59)
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the arrival time

t0=





z

cosϑ0
+

z0−z
√

(z−z0)
2

z2 tan2ϑ0+z2−2zz0+z20





z= z02 −∆

(60)

and the end of the pulse is evaluated as

te=





z

cosϑ0
+

z0−z
√

(z−z0)
2

z2 tan2ϑ0+z2−2zz0+z20





z= z02 +∆

(61)

The choice of plotting parameters, convenient for illustration, ϑ0 = 0.1,

z0=0.01, ∆=0.001 give t0=1.0033 ·10
−2, te=1.0075 ·10

−2. Note that the values

are not related to real matter and geometry parameters. The plot has been made

with SWP and is of a corresponding form.

Figure 8. Intensity for single scattering approximation, inclined beam; the green line results

from a superposition of the constant density with a periodic one

The beam has traveled from the source through air, where we do not account

for scattering or absorption. It has penetrated the beryllium layer where the

scattering and absorption phenomena have occurred. It has traveled through air

again and finally has arrived to the receiver. We can see that the receiver will

detect a delayed and spread pulse with peaks and it will rapidly decrease as the

scattered photons arrive.
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5. Conclusions

We have obtained a solution of the Kolomogorov [4] forward equation [21,

16] for single scattering for an initial pulse of angle θ = θ0. We modeled the

equations for the total scattering cross section σtot and the differential cross

section σscat for beryllium. Once we had had this, an expression for the intensity

rate was derived from the initial pulse arriving at a small receiver situated after

the beryllium layer at position z= z0. the results were obtained particularly with

a point receiver. After plotting the result of this intensity it was shown that the

pulse arrived at the receiver with a certain delay and spread. With this formulas,

considering other materials and modeling the scattering cross section of them, we

were able to predict the delay and intensity of the initial pulse. There is space

for continuation of this work [22]. Multiple scattering approximation is in our

interest. The next step is to calculate it using the recurrent relation (6). When f

is calculated in the limit, we can count the stream for it. The properties of layers

can be obtained by studying the plots from the receiver. There are many situations

that could be studied in the future. It is a matter of changing the initial condition.

To be more realistic, the initial pulse should be taken continuous in time. An initial

continuous pulse distributed in a solid angle, θ∈ [θ0,θ1], φ∈ [φ0,φ1] can be studied.

Different layer materials could be used as well as the position and thickness of

the layer. A very interesting approach would be to consider heterogeneities inside

layer materials, see Figure 3. In this case The distribution of heterogeneities in the

media should be introduced. This would be more realistic, as materials present

non-homogeneities in their structures.
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