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Abstract

Differential Evolution (DE) is a popular and efficient continuous optimization technique
based on the principles of Darwinian evolution. Asynchronous Differential Evolution is a
DE generalization that allows to regulate the synchronization mechanism of the algorithm
by tuning two additional parameters. This paper, after providing a further experimental
analysis of the impact of the DE synchronization scheme on the evolution, introduces
three self-adaptive techniques to handle the synchronization parameters. Moreover the
integration of these new regulatory synchronization techniques into state-of-the-art (self)
adaptive DE schemes are also proposed. Experiments on widely accepted benchmark
problems show that the new schemes are able to improve performances of the state-of-the-
art (self) adaptive DEs by introducing the new synchronization parameters in the online

automated tuning process.

1 Introduction

Optimization problems can be defined as the
problems in which the objective is to maximize
or minimize a given objective function. Recently,
evolutionary and population-based algorithms [9]
have gained increasing attention for their ability
to locate the optimal (or a near-optimal) solu-
tion more quickly than traditional techniques, es-
pecially in the optimization of non-linear and non-
differentiable functions. In this context Storn and
Price [32, 22, 7, 5] proposed Differential Evolution
(DE) which is a simple and powerful Evolution-
ary Algorithm (EA) for global optimization over
continuous spaces. Its efficiency and robustness
has been successfully demonstrated in various fields

such as pattern recognition [16], mechanical engi-
neering [24] and many applications of electrical en-
gineering [28], as, for example, automated analog
electronic circuits sizing [29].

In classical DE three control parameters are in-
volved: the population size NP, the scale factor F,
and the crossover probability CR. However, DE
main peculiarity is its differential mutation operator
that allows to self-adapt DE search at the landscape
of the objective function at hand.

Classical DE, as other EAs, is characterized
by a discrete generation model that synchronously
evolves the population. Conversely, in [27] Qing
proposed a sequential generation model where the
individuals of the population are asynchronously
and continuously updated.
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In our previous work [19] Asynchronous Dif-
ferential Evolution (ADE) has been introduced as a
DE generalization that takes into account the syn-
chronization mechanism of the algorithm allowing
to DE a behaviour somewhat in the middle between
the generational and the sequential model. This is
achieved by introducing two additional parameters,
i.e. the synchronization degree SD and a population
shuffle strategy SH.

However, as well known, parameters tuning
represents a major issue for every EA. Therefore,
users are still faced with the problem of preliminary,
or interactively, hand-tuning the algorithm param-
eters. This issue led researchers to consider tech-
niques that automatically regulate DE parameters
during the evolutionary process without the need of
user interactions [41].

Moving from this consideration, this work, after
providing a study of the impact of the new param-
eters on the evolutionary search of DE, introduces
three self-adaptive schemes for SD and SH thus pro-
viding a viable way towards an efficient and defini-
tive parameters-free DE. Furthermore, these syn-
chronization regulatory techniques have been inte-
grated in two of the most representative (self) adap-
tive DE proposals (SaDE [26] and jDE-2 [3]) thus
resulting into six completely adaptive DE schemes.

The rest of the paper is organized as follows.
An overview of classical DE is shown in Section 2.
State-of-the-art of the works related to DE synchro-
nization model and DE adaptive schemes are pro-
vided in Sections 3 and 4. The synchronization de-
gree and shuffle strategies introduced in [19] are re-
called in Section 5, while the self-adaptive schemes
of these new parameters are introduced in Section
6. Experimental results aiming at point out the im-
pact of the synchronization degree on the evolution
and the improvements obtained with the new adap-
tive DE schemes are reported in Section 7. Finally,
Section 8 concludes the paper by introducing also
some possible future lines of research.

2 The Differential Evolution algo-
rithm
Storn and Price [32] proposed Differential Evo-

Iution (DE) which is a simple and powerful tech-
nique for optimizing non-linear and even non-

differentiable real functions. Substantially, DE is a
population-based evolutionary algorithm (EA) that
exploits a population of potential solutions in order
to probe the search space.

DE presents some similarities with traditional
EAs, indeed, it uses the genetical operators of mu-
tation, crossover, and selection as in Genetic Algo-
rithms (GAs) [18]. However, unlike the original bi-
nary GAs, it does not employ a binary encoding but
uses a population of NP D-dimensional real values
vectors.

DE initially generates a random population of
candidate solutions uniformly distributed in the so-
lutions space. At each generation G, DE performs
the mutation and the crossover operations to pro-
duce a trial vector for each individual, also called
target vector, in the current population. Each tar-
get vector is then replaced in the next generation
by the associated trial vector if and only if the pro-
duced trial presents a better fitness than the target.
This process is iteratively repeated, through the so
called generations, until a stop criterion is met (e.g.
a given amount of fitness evaluations has been per-
formed).

In the following subsections the three main
DE phases (mutation, crossover, and selection) are
briefly described.

2.1 Mutation

The mutation phase, for each target individual
X G, generates a mutant vector v;g41. The basic
mutation scheme (’rand/1”) originally proposed in
[32] computes the mutant as follows:

ViG+1 =Xr.6 +F - (X0,6 —Xr,6) (D)

where rg, r1, rp are three random integers in [1, NP]
mutually different among them. x,, is called base
vector, while x,, — x,, is the difference vector, and
F > 0 is the scale factor parameter.

This differential mutation operator represents
the main peculiarity of DE. Indeed, it confers to
the algorithm the ability to automatically adapt the
mutation step size and orientation to the fitness
landscape of the given optimization problem, other
than to shade the DE search from an explorative to
an exploitative behaviour with the passing of gen-
erations.
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In [24] and [12] other mutation schemes have been
proposed and generalized. In the following we re-
port the two most popular ones, i.e. “best/1” and
”current-to-best/1”, that differ from (1) for a differ-
ent choice of the base vector:

Vi.G+1 = Xpest,G T F- (Xrl G — xrz,G) 2)

ViG+1 = X6+ F - (Xpest.c —Xi,c) + F - (Xr,,6 —X1,.,G)

3)
where r and r, are random integers in [1, NP] mu-
tually different among them, while x.y ¢ is the best
fit individual until generation G.

Since the use of the best fit individual in the
base vector part of the differential mutation opera-
tor, these two latter schemes, conversely from the
former one, shift the DE exploration/exploitation
balance towards exploitation.

2.2 Crossover

After mutation, a binomial crossover opera-
tor generates a population of NP trial vectors, i.e.
u; G+1, by recombining each pair composed by the
generated mutant v; g and its corresponding tar-
get x; g. Indeed, each trial vector is formed by tak-
ing some components from the target vector and
some other ones from the mutant, according to the
crossover probability CR € [0, 1].

Formally, the j-th component of the trial vector
u; G+1 is computed according to:

Vi,G+1,j
Ui G+1,j :{ X',G o
i,G,j

if 61,.,- <CRV 627/‘ =]
otherwise

“)
where 6, ; € [0, 1] is a random number generated for
each dimension j and 6, ; € [1,D] is a random in-
teger generated for each trial vector which ensures
that u; g1 inherits at least one component from the
mutant v; g+1.

This crossover scheme is usually denoted as bi-
nomial crossover and, although it is not the only one
proposed (see [24] for a comprehensive review), it
is generally assumed as the standard DE crossover
scheme.

2.3 Selection

After crossover phase there are two populations
with a one-to-one correspondence: the target indi-
viduals {x;} and the trials {u;;1}. Therefore,

in the selection phase, the next generation popula-
tion is selected by a one-to-one tournament among
each target and its associated trial, thus the best fit
individual of the two enters in the next generation.
More formally, in the case of a minimization prob-
lem:

o= wige i fluign) < flxig)
LG+ XiG otherwise

(6))

where f: [a,b]” — R is the objective/fitness func-
tion to minimize.

3 Synchronization Schemes in DE

The evolution mechanism of classical Differ-
ential Evolution (DE) relies on a population up-
dating procedure that follows the so called “dis-
crete generation model” or “generational model”
for short. In this scheme, during a generic gener-
ation G, the whole population remains unchanged
until it is completely replaced at the begin of the
next generation G + 1. Therefore, in generation G
the DE operations of mutation and crossover gener-
ate a temporary population of trial vectors using the
current population produced at the end of the previ-
ous generation G — 1, then the one-to-one selection
among temporary and current population replaces
every individuals in the next generation G + 1. Us-
ing this generational model we can say that gener-
ations act as synchronization points thus DE popu-
lation is synchronized every NP fitness evaluations
(performed in the single generation).

However, the previous described generational
model is not the only one applicable to DE. A
completely asynchronous population updating pro-
cedure is adopted, for example, in [27] and [37] and
it follows the usually called “continuous generation
model” or ’sequential model”. In this case all the
three DE operations of mutation, crossover, and se-
lection are sequentially performed on every individ-
ual, thus the new born offspring immediately enters
the population of candidate solutions without wait-
ing until the synchronization point. Therefore the
evolution of each individual is performed using a
population updated with last “evolutionary results”.

From the point of view of memory require-
ments, the sequential (or completely asynchronous)
model allows to use only one population while gen-
erational DE requires a double sized memory in or-
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der to store current and trial populations. More-
over, the sequential model, thanks to the use of a
“freshly” updated population, generally presents a
faster convergence speed, however this may lead to
entrapment in a local optimum thus reducing the al-
gorithm robustness with respect to generational DE.
These behaviours are due to the different diversity
rates obtained by the two model. As can be seen
in the section related to experiments (Section 7), in
sequential DE the diversity of the individuals in the
population is shrinking at a grater rate than classical
DE. This is also reasonable since the population of
classical DE remains stable during the duration of
any single generation, while sequential DE contin-
uously diversifies the population every fitness eval-
uation thus it is very plausible that every NP fitness
evaluations (i.e. one generation in classical DE) the
asynchronous scheme is able to reach a smaller de-
gree of diversity with respect to the generational up-
dating scheme. Finally, it is important to note that
this variable velocity of the diversity rate highly im-
pacts on the exploration/exploitation balance of DE
search process.

Moreover, in completely asynchronous DE a
newborn trial vector can be naturally compared with
an arbitrary individual of the population, so differ-
ent selection schemes can be adopted. Tagawa in
[34] introduces the random and worst survival se-
lection methods that select for comparison, respec-
tively, a random or the worst fit individual of the
population. Another important selection scheme
that can not be directly implemented in generational
DE is the crowding selection [30] that replaces the
population individual genotypically closer to the
considered trial.

Population updating procedure lying some-
what in the middle between completely asyn-
chronous and classical DE have also been pro-
posed. Transversal DE (TDE) [12] and Dispersive
DE (DDE) [35] extend the sequential scheme by in-
troducing a new parameter 7'S and allowing an indi-
vidual to evolve T'S times before replacing the target
one in the population. While in TDE the popula-
tion is updated every “transversal step”, in DDE the
population update is performed only after all the 7'S
transversal steps have been performed. Although
Feoktistov in [12] claims that TDE allows interme-
diate behaviours between sequential and classical
DE, it can be noted that, while the sequential DE

can be easily reproduced by setting 7S = 1, the gen-
erational DE can not be reproduced with any value
of the T'S parameter.

The necessity to have a population updating
procedure that naturally shades from a completely
asynchronous to a synchronous behaviour has led
us to propose Asynchronous DE (ADE) [19]. ADE
introduces a new synchronization degree parame-
ter SD that is able to naturally reproduce sequen-
tial DE when SD = 1 and classical DE when SD =
NP. Moreover, as described in Section 5, a “’super-
synchronous” behaviour is also implemented by
setting SD > NP and also different population or-
dering criteria have been considered thus allow-
ing DE to approximate the random and worst sur-
vivor selection methods previously described also
in the case of a not completely asynchronous up-
date scheme. ADE, substantially, implements in
DE context what is the Generation Gap concept pro-
posed for GAs in [8, 10].

However, although different parameters that
regulates the DE population updating procedure
(i.e. SD in ADE and TS in TDE/DDE) have been
proposed, there is no proposal for an adaptation
scheme that automatically regulates these param-
eters during the evolution thus relieving the user
from the issue of hand-tuning them. Moving from
this consideration, in this paper, we introduce a self-
adaptive scheme for the synchronization degree pa-
rameter (SD) of ADE.

4 Parameters Adaptivity in DE

Differential Evolution (DE) control parameters
need to be adjusted in order to adapt DE search at
the given problem. As described in Section 2, these
parameters are the values NP, F', CR in addition
to the non-numerical parameters which regulate the
mutation and crossover strategies [24].

Concerning the three numerical parameters,
Storn and Price [32] suggest: NP = 10-D (where D
is the problem dimensionality), F € [0.5,1], CR €
[0.8,1]. Many other works have discussed the pa-
rameters role and tuning in DE [21, 40, 38]. The
commonly recognized idea is that CR is more sen-
sitive to problem properties such as modality and
separability (low CR values are a good choice for
separable problems and values close to 1 are pre-
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ferred for non-separable objective functions), while
F is more related to convergence speed. Instead,
NP is generally regulated in order to handle differ-
ent problem dimensionalities. Binomial crossover
(rule (4)) is usually preferred to other crossover
schemes, while the two most applied mutation op-
erators are “rand” and “’current-to-best” (defined re-
spectively in rules (1) and (3)). Using the nota-
tion originally proposed in [32], the DE schemes
that use binomial crossover and the two mutation
strategies aforementioned are called, respectively,
“rand/1/bin” and “current-to-best/1/bin”.

The theoretical and experimental studies con-
ducted [14, 38, 17] show that different DE control
parameters are quite dependent on characteristics
of the given optimization problem. The main rea-
sons are that different parameters settings lead to
different exploration/exploitation balances [11] by
also affecting the population diversity shrinking rate
[39] which in turn heavily affect DE performances
on the problem at hand leading in the worst case to
a slow convergence or to entrapment in local op-
tima. Therefore, a single parameters setting can
work well for a particular class of problems and
be completely unsuitable for another class, further-
more, it is reasonable to think that different param-
eters settings might be preferred in different evolu-
tion stages.

Hence, although DE has been shown to be a
simple and powerful optimization technique, users
are still faced with the problem of preliminary, or
interactively (at different stages), hand-tuning the
algorithm parameters. This tuning process may re-
quire a huge amount of computational time other
than a deep insight about the problem by the user.
These issues led researchers to consider techniques
that automatically regulate DE parameters during
the evolutionary process without the need of user
interactions.

Different adaptive schemes of DE have been
proposed [41]. They can be primarily classified
in two categories: the ones that use a determin-
istic logic to modify parameters values, and the
ones based on an adaptive or self-adaptive mech-
anism that exploits some feedback from evolution-
ary process. For the first category it can be men-
tioned DETVSF [6] that linearly shades F from
1 to 0.5 with the passing of generations, in this
way DE should move from an explorative to an ex-

ploitative behaviour during the evolution. However
more recent proposals belong to the second cate-
gory and, thanks to the use of an evolution feed-
back, they result more performant than the deter-
ministic schemes.

An aspect common to all the adaptive or self-
adaptive DEs is the general scheme that works by
dividing the evolutionary process into multiple tem-
poral phases and performing a parameters learning
procedure in each phase in order to hopefully decide
the more suitable parameters setting for the next
phase. The decision mechanism is generally based
on current DE performances such as the number of
trial vectors successfully entering in DE population
or the fitness gain.

It is also worthwhile to note that in [24] two new
terms are defined: dither and jitter. Dither identi-
fies the practice of using a different parameter value
(e.g. F or CR) for each individual of the population,
while jitter refers to the use of a different parame-
ter value (generally only for F) for each problem
dimension other than for each individual. Anyway,
in (self) adaptive schemes it is commonly adopted
the dither approach, also because the weights of
the problem dimensions are implicitly and automat-
ically adapted by the differential mutation operator
of DE.

In the following a brief description of six (self)
adaptive DE schemes is provided.

4.1 FADE

Fuzzy Adaptive Differential Evolution (FADE)
has been introduced by Liu and Lampinen [15]. It
adapts the control parameters F and CR by means
of a fuzzy controller [23]. Basically, it is composed
by a list of hand-tuned fuzzy ”if-then” rules which
regulate the DE parameters in different ways. The
rules are selected and applied using objective func-
tion feedback as control input.

4.2 DESAP

Differential Evolution with Self-Adapting Pop-
ulations (DESAP) has been introduced by Teo [36].
DESAP adapts all the DE numerical parameters, i.e.
the population size NP other than F and CR.

Each population individual is extended with a
local version of the three parameters NP, F, and
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CR. While F and CR are adapted using a differ-
ential mutation scheme similar to the one used for
individual mutation, the DESAP main idea is the
adaptation of the population size NP.

Two different DESAP schemes are proposed:
DESAP-Abs, and DESAP-Rel. The initial NP is set
to 10- D (where D is the problem dimensionality).
In both schemes the individuals attributes relative to
population size are stochastically evolved by Gaus-
sian perturbation and differential mutation. At the
end of a learning stage the average of the popula-
tion size attributes is computed and used as the new
NP for subsequent generations. If the new popu-
lation has a greater size than the previous one then
the worst fit individuals of the previous population
are discarded, in the other case the previous best
fit individuals are cloned until new population size
is reached. DESAP-Abs and DESAP-Rel differ for
the use of, respectively, absolute values or growing
rates as population size attributes.

4.3 SaDE

Self-adaptive Differential Evolution (SaDE) has
been proposed by Qin and Suganthan in [26] and
extended in [25]. It automatically adapts the con-
trol parameters F and CR other than the learning
strategy.

For each target individual, F is allowed to vary
in (0,2] and is randomly sampled from a Gaussian
distribution, with mean 0.5 and standard deviation
0.3, denoted by N(0.5,0.3). Instead, CR is ran-
domly sampled, for each target individual, from the
Gaussian distribution N(CR,,,0.1). CR,, is initial-
ized at 0.5 and updated every 25 generations. A
different CR value is generated for each individual
that maintains it for 5 generations, in this way, after
25 iterations, every individual has changed its CR
exactly 5 times. At the end of this learning stage
the new CR,, is computed by averaging over all the
CR values that have led to the selection of a trial
vector for the next generation.

Concerning DE learning strategy, the first SaDE
proposal [26] adopts two different strategies while
the second version [25] extends the first one by em-
ploying two more strategies for a total of four strate-
gies. However, in the following we describe the
first SaDE since it is the one referred in Sections
4.4 and 6. Hence, the two learning strategies em-

ployed are “rand/1/bin” and “current-to-best/1/bin”
that, for the convenience of the following descrip-
tion, we call, respectively, strategy 1 and strategy
2.

The probability of applying strategy 1 to each
individual is p;, while po = 1 — p; is the proba-
bility of applying strategy 2. They are initialized
at p; = p» = 0.5. These values are modified ev-
ery learning stage composed by a given number of
generations (50 is used in [26] and in our experi-
ments). During this stage, the number of successes
and failures of the produced trials are recorded, re-
spectively, in nsy, nf for strategy 1, and nsy, nf;
for strategy 2. Then the probabilities are updated
according to:

_ nsi-(nsa+nfs)
P = nsy-(ns1+nfi)+nsi-(ns2+nfs) (6)
p2=1-pi

Since the successes/failures counters are resetted
every learning stage, the new probabilities reflect
the strategies success rates obtained in the last gen-
erations avoiding possible side effects accumulated
in previous stages.

Finally, in order to speed up the convergence,
SaDE applies a local search procedure (the Quasi-
Newton method) on some selected solutions every
200 generations.

44 jDE-2

Brest and others proposed jDE-2 in [3] as an im-
provement of their previous self-adaptive DE [4].
The proposed technique adapts the numerical pa-
rameters F' and CR other than the DE learning strat-
egy. In this latter case the same scheme of SaDE
[26] is adopted (see Section 4.3).

Each individual is extended with two couples of
the control parameters F' and CR, one for each strat-
egy. More formally, individual i is associated to Fl-1 ,
CR!, F?, CR?. Therefore, the trial associated with
individual 7 is generated using the couple of param-
eters F* and CR;, where s is the selected learning
strategy (that is 1 or 2).

The numerical parameters are initialized to
F! = F? = 0.5 and CR! = CR? = 0.9, then new
parameters values are computed before differential
mutation is performed and replace the old ones if
and only if the produced trial presents a better fit-
ness than the target solution with which is com-
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pared. In this way the better values of these control
parameters lead to better individuals which, in turn,
are more likely to survive and produce offspring
and, therefore, propagate these parameters values.
The computation of the new control parameters fol-
lows the following rules:

0.14r;-09 ifr,<0.1
s —
Fi,G+1 - { Fl.fG otherwise @
s - r3 if r4 <0.1
CRLGH - { CR?,G otherwise ®)

where ry, rp, r3, r4 are uniform random numbers in
[0,1] and F}';; is the F value for strategy s of individ-
ual i at generation G (a similar meaning is present
in the CR update rule (8)).

Out-of-bounds trial components are avoided us-
ing a technique that mixes the “reflecting back™ [31]
and setting on bounds” [24] methods:

aj ift§0.5/\u,~,j,(;<aj
bj iflSO.S/\ui7j,G>bj
2'aj —UijG ift > O-SA”i,j,G <aj
2-bj — Ui ;G if r > 0.5/\14,'7]‘7G > bj

©))
where a; and b; are, respectively, the given lower
and upper bounds and ¢ is a uniform random num-
ber in [0, 1].

Finally, in order to avoid a premature conver-
gence, every [ generations, jDE-2 replaces the k
worst individuals with new randomly selected ones,
but without evaluating them. In [3] and in our ex-
periments the values for [ and k are set to kK = 30
and / = 100.

ui7j7G =

45 JADE

JADE has been recently proposed by Zhang and
Sanderson [42]. It implements the new mutation
strategy “current-to-p-best” and controls F and CR
by using the two self-adaptive parameters ur and
MCR.

The mutation operator introduced is a general-
ization of the “current-to-best” strategy (rule (3)). It
attempts to diversify the population without losing
the fast convergence property of “current-to-best”
at the cost of maintaining a fitness-based rank of
the population. Indeed, “current-to-p-best” strategy
generates a mutant vector according to:

ViG1 = X6+ F - (Ko 6 —Xi6) +F - (Xr G —X1,.6)
(10)

where xlljest,G is uniformly chosen as one of the top
100p% individuals in the current population (there-
fore p € (0,1]).

At each generation the crossover probability
CR; of individual i is generated by sampling a Gaus-
sian distribution with mean pcg and standard devi-
ation 0.1, while ucg is updated at the end of each
generation according to:

pcr = (1 —c)-ucr+c- (Scr) (11)

where Scp is the set of successful crossover proba-
bilities, ¢ is a control parameter, and (-) is the usual
arithmetic mean.

Instead, the scale factor F; of individual i is sam-
pled from a Cauchy distribution with location pa-
rameter ur and scale parameter 0.1. ur is updated
at the end of each generation according to:

pr = (1—=c)ur +c-(Sr) (12)

where Sr is the set of successful scale factors, ¢ is
the same control parameter of (11), and (-) is the
Lehmer quadratic mean:

o ZFESFFz

 Lres F 4

(SF)

Note finally that in [42] values for the parame-
ters ¢ and p are suggested.

4.6 DEPD

DEPD has been proposed by Ali and Torn in
[1]. Various modifications to classical DE have
been made like the use of two evolving populations.
Crossover rate CR has been fixed to 0.5, while the
main innovation concerns the scale factor F that,
conversely from the previous described schemes,
is regulated by means of a fitness-based adaptation
mechanism:

f ;nin f min

jf’"—"" |} otherwise
max

14
max{lyin, 1 — | 14

B { max{ Ly, | — [ L2} if | Lnex| <
where [,;;, = 0.4 is a lower bound for F, while f,;,
and fq are the minimum and maximum fitness
values over the population individuals obtained in
the last generation.
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5 Asynchronous Differential Evo-
lution

Asynchronous Differential Evolution (ADE) is
a generalization of classical DE that takes into ac-
count the synchronization mechanism of the algo-
rithm. ADE has been introduced in [19] where its
potential benefits for DE performances have been
shown.

As described in Section 2, classical DE is char-
acterized by a generational loop composed by the
phases of mutation, crossover, and selection. In this
loop it is generally assumed a hidden and implicit
synchronization mechanism ensuring that crossover
and selection phases are performed exactly with NP
couples of individuals of the form target/trial. This
is due to the fact that the mutation phase generates
exactly NP mutants.

Algorithm 1 ADE

1: procedure ADE
2: X length <— NP

3: V .length < SD
4: INITIALIZE(X)
5: from 1
6: while termination criterion is not met do
7: V <~ MUTATION(X)
8: to < from+min{SD,NP} — 1
9: if 70> NP then
10: to<+ NP
11: end if
12: X|[from:to] < CR_SEL(V,X|from:to])
13: UPDATE_GLOBAL _BEST()
14: from<—to+1
15: if from > NP then
16: from 1
17: SHUFFLE(X)
18: end if
19: end while

20: end procedure

ADE made explicit the DE synchronization
mechanism by introducing a parameter SD that reg-
ulates the number of mutant vectors produced by
mutation phase. Since SD can naturally assume
positive integer values from 1 to NP, DE is now
able to vary from a completely asynchronous be-
haviour, i.e. SD = 1, to a completely synchronous
one, i.e. SD = NP (the classical DE). Moreover, a
further extension has been proposed by allowing SD
values greater than NP in order to model a ”super-
synchronous” DE. In this latter case selection is per-
formed among more than two individuals.

ADE is formally described by the pseudo-code
reported in Algorithm 1. X and V represent, re-
spectively, the set of the NP population individu-
als and the set of the SD mutants. Instead, the
notation X[a : b] is used to represent the subset
(X4 Xas1,... . Xp} CX.

MUTATION and CR_SEL implement the three
DE phases. The MUTATION routine, given the DE
population in input, produces the mutants according
to one of the DE mutation strategies (see Section
2.1), while the CR_SEL routine modifies the block
of population in input (even all the population if
SD > NP) using the mutants previously produced,
i.e. it performs crossover and selection according
to (4) and (5). With this approach, unlike in clas-
sical DE, the order of the individuals is generally
relevant. For this reason a population shuffling pro-
cedure, i.e. SHUFFLE, is performed, according to
some criterion, every time that every one of the NP
individuals has been evolved. Finally, at each itera-
tion the global best value is updated. Although this
seems to be a marginal aspect, note that this is not
true, indeed, in the case of a mutation scheme em-
ploying the best fit individual (like (2) or (3)) the re-
sponsiveness of the algorithm to improvements be-
comes more immediate.

As a result of this generalization, the concept
of generation is now decoupled from that of main-
loop iteration. Indeed, since in each loop iteration
only SD individuals are evolved, a complete popula-
tion renewal requires generally more than one itera-
tion. As aforementioned, when SD = NP the classi-
cal DE behaviour is reproduced. Instead, when the
SD < NP a certain degree of asynchrony is intro-
duced. As consequence of the fact that a genera-
tion persists for more than one main-loop iteration,
the evolution proceeds by using “freshly updated”
solutions thus resulting in a more greedy and ex-
ploitative search. Obviously, as SD approaches NP
the greediness decreases and potential population
diversity increases.

In the asynchronous case, i.e. SD < NP, the
exact number of main-loop iterations needed for a
completely population renewal is m = [NP/SD].
This means that the population is split in m chunks
evolved separately one after the other. Individuals
in the first chunks are more likely to be associated
to mutants formed by using the previous generation
population, while individuals in the last chunks tend
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to be associated to mutants produced by freshly up-
dated individuals (due to the previous chunks evo-
lution). This mechanism confers a more greedy and
exploitative evolution to last chunks and is the rea-
son of why when SD < NP, unlike the classical case
SD = NP, the order of individuals is not irrelevant.

In the super-synchronous case, i.e. SD > NP,
in each population update loop, more than NP fit-
ness evaluations are performed resulting in a more
accurate navigation of individual neighborhood, es-
pecially in later loops when the step size becomes
small. Mutation routine produces a mutants popu-
lation V containing more vectors than the individ-
uals population X, thus that at least, and not ex-
actly, one mutant is associated to a target individ-
ual. Indeed, the mutant vectors associated to x;
have the form v; . yp Where k is a non-negative in-
teger, i.e. mutants are assigned to target vectors
in a circular way until the end of mutants popula-
tion is reached. In crossover phase the mutants as-
signed to the same target vector are combined with
it and an equal number of trial vectors u; x.nyp iS
generated. Then the selection is performed among
the trials and the target individuals resulting in a
tournament among, usually, more than two vec-
tors. For example, in the case SD = 2 - NP, the
next generation vector is computed according to
XiG+1 = argmin{f(x; ), f(uiG+1), f(Ui+nPG+1) }-
When SD is a multiple of NP, each target is asso-
ciated to the same number of mutant vectors, i.e.
SD/NP, but this is no more true if SD is not a mul-
tiple of NP. In this latter case, first individuals are
associated to one more vector than the last ones thus
that also in this case the order of individuals in the
population can not be considered as irrelevant.

It is worthwhile to note that both the asyn-
chronous and super-synchronous case naturally
“converge” to classical DE when SD = NP and that
when SD = 1 sequential DE is reproduced. Instead,
the super-synchronous case is related to classical
DE in a similar way of how Dispersive DE [35] and
Transversal DE [12] are related to sequential DE.

In [19], three different shuffle strategies have
been proposed:

— static: it is the implicit ordering criterion
adopted in classical DE, i.e. it uses for all the

generations the same order established at the
startup (complexity O(1)),

— dynamic: consists in computing a random per-
mutation of the individuals at the end of ev-
ery generation (complexity O(NP) using Fisher-
Yates method [13]),

— best: at the end of every generation the individ-
uals are sorted from the best fit to the worst fit
(complexity O(NP -1logNP)).

The classical static criterion has been reported only
for completeness, since, although its low complex-
ity, with a not so huge population size it has no
reason to be adopted. Indeed, in the classical case
SD = NP, the use of a dynamic shuffle instead of a
static one does not impact on the search scheme of
the algorithm!. In [19] an analysis of the possible
couplings between shuffle and mutation strategies
have been provided. The experimental results sug-
gest to couple: the dynamic shuffle strategy with a
purely random mutation scheme (like (1)) and the
best shuffle criterion with a mutation scheme that
involves the population best individual (like (2) or
(3)). Finally, it is interesting to note that the dif-
ferent ordering criteria here proposed are able to
approximate the survival selection schemes intro-
duced in [34].

Summarizing, the new parameters introduced
by ADE are the synchronization degree SD and the
shuffle strategy that will be referred as SH in the
following sections.

6 Self-adaptive Asynchronous DE

In this paragraph we introduce some Self-
adaptive DE schemes that take into account the syn-
chrony regulatory parameters proposed in [19].

In [19] and in the more recent experiments dis-
cussed in Section 7 of this paper it has been em-
pirically proved that different synchronization be-
haviours are able to improve DE performances by
acting on the population diversity shrinking rate.
Moreover, as described in Section 4, a parameters
self-regulatory mechanism allows DE to automati-
cally adapt its search at the fitness landscape of the
given optimization problem without the need of an

IThis change has the same effect of changing the order of the outcomes of the random number generator, therefore, since the
outcomes are independent among them, there is no difference in applying static or dynamic shuffling to classical DE.
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expensive parameters tuning by the user. Moving
from these considerations, a natural choice is to in-
troduce the synchronization parameters SD and SH
in (self) adaptive DE schemes.

After analyzing and evaluating the state-of-the-
art (self) adaptive DEs (see Section 4) we propose
new (self) adaptive asynchronous (SAA) schemes
on top of jDE-2 [3] and of a variant of SaDE [26] re-
ferred in the following with the acronym ”SaDE*”.
The choice of these two base algorithms is due to
the fact that they are the state-of-the-art most repre-
sentative schemes of the categories of adaptive DEs
(SaDE) and self-adaptive DEs (jDE-2).

SaDE has been modified in SaDE* aligning it
with jDE-2 in order to obtain a more significant
comparison. Conversely from SaDE, in SaDE* no
local search procedure is employed, however, the
population partial replacement procedure of jDE-
2 (described in Section 4.4) is adopted. It is also
important to note that SaDE* and jDE-2 natively
implements the same learning strategy adaptation
scheme.

Furthermore, both in SaDE* that in jDE-2, an
improvement in the initialization phase has been
introduced. Half population is generated using a
completely random method according to (15), while
the other half is initialized in a random bound of
the bounding box that defines the feasible search
space according to (16). Note that this initialization
scheme is applied not only at the start of the algo-
rithm but also every time that the worst individuals
replacement procedure is invoked, i.e. every 100
generations.

xivj:aj—kr-(bj—aj) (15)
[ 4 ifr<o0s
Yi.j _{ bj otherwise (16)

where r is a random number in [0, 1] and a;, b; are
the lower and upper bounds for dimension j. In this
way, the algorithm becomes more efficient for those
problems having the global optimum located on the
the search space bounds.

In order to adapt the synchronization parame-
ters SD and SH, note that, in ADE, the concept of
generation is decoupled from that of main-loop iter-
ation (see Section 5). Indeed, since a generation is
generally composed by more than one iteration, in

the following we use the word generation” to indi-
cate a completely renewal of the population, i.e. a
generation ends after that NP new trials have been
generated (or, equivalently, NP fitness evaluations
have been performed).

Basing on experimental results (see [19] and
Section 7), the allowable domains for parameters
SD and SH have been restricted. Since a super-
synchronous DE is rarely effective and the classical
static shuffle strategy has no meaning to be adopted
in a not synchronous behaviour, we have decided to
restrict the values for SD in [1,NP] NN and to allow
only the dynamic and the best ordering criteria for
SH. Hence, for the convenience of the following
description we use SH = 1 and SH = 2 to indicate,
respectively, dynamic and best shuffle strategies.

Since the adaptation mechanism used in SaDE*
and jDE-2 for F and CR works at individual level,
it could not be used for SD and SH. Indeed, these
two parameters do not refer to a single individual
but to the whole population. For this reason we
have decided to split the evolution in different learn-
ing stages, each one composed by a given num-
ber of generations. Different SD values and SH
strategies are adopted for different generations of
the same stage, thus the performances of the SD and
SH choices are recorded and used to adjust these
parameters for the next evolution stage.

For the shuffle strategy SH, a simple mecha-
nism that exploits the learning strategy adaptation,
common to SaDE* and jDE-2, has been adopted.
From experiments on ADE [19], it is emerged
that the best couplings for what regards learning
and shuffle strategies are “rand/1/bin”-"dynamic”
and ”best/1/bin”-"best”.  Unfortunately, in our
base algorithms, instead of the learning strategy
”best/1/bin” it is employed “current-to-best/1/bin”.
However, since both these strategies exploit the
population best individual, and comforted also by
some preliminary experiments, we have concluded
that the “best” shuffle method is suitable also for
“current-to-best/1/bin”. Therefore, at each genera-
tion, we apply the shuffle strategy SH = s basing on
the same probability py (where s is 1 or 2) learned
every 50 generations for the DE learning strategy
(see Subsection 4.3). In this way the suggested ideal
couplings have more probabilities to be applied, al-
though other couplings are not avoided.

2For a detailed discussion about the difference between adaptive and self-adaptive DEs refer to [4].
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Instead, for the synchronization degree param-
eter SD, three different adaptation schemes have
been introduced. The first scheme SAA1 makes
use of purely probabilistic choices, the second one
SAAZ2 tries to variate some SD values in the direc-
tion learned from previous evolution stage, while
SAA3 employs a purely deterministic update of SD
that is not based on the evolution feedback. These
three schemes are detailed in the following subsec-
tions.

6.1 SAAT1: the probabilistic strategy

In SAAL five equally spaced synchronization
degrees are involved, i.e.: SD; =1, SD, = NP/4,
SD3 = NP/2, SDy = 3-NP/4, SDs = NP. Each
SDy, is associated to its probability to be applied g.
Therefore, at each generation one of SD; synchro-
nization degrees is employed according to the prob-
ability distribution {g,}. During the evolution the
probabilities g; are updated, while the SD; values
remain unchanged throughout the entire execution.

The probabilities are equally initialized to g; =
0.2 for each k, while they are updated at the end
of each learning stage of the duration of 50 gener-
ations. In each learning stage, the number of tri-
als successfully entering into next generation while
the SD; value is employed, are recorded as succy,
instead, the amount of discarded ones is recorded
in fail,. Therefore the probabilities for the next
stage are updated according to gy = succy /(succy +
faily). Then they are normalized (g = g/ Y3 g
for each k) in order to sum up to 1.

Side-effects due to previous stages are avoided
by resetting the counters succy, faily after every up-
date. Finally, note that, to prevent possible divisions
by zero, in the first 5 generations of each learning
stage all the SD; are employed, thus ensuring that
each one is used at least one time.

6.2 SAA2: the ’moving values” strategy

In SAA2, as in SAAI, five synchronization de-
grees, initialized to SD| = 1, SD, = NP/4, SD3 =
NP/2, SDy = 3 -NP/4, SDs = NP, have been
adopted. However, conversely from the previous
strategy, the SDy, values are not associated to prob-
abilities and are not anchored to their initial values
during the entire evolution.

Every 5 generations all the SD; are employed
exactly one time. However, in order to avoid pos-
sible biases due to their order, they are randomly
permutated every 5 generations. As in SAATI, succy
records the number of trials promoted to next gener-
ation while SDy is employed. This value is accumu-
lated within a learning stage of 25 generations thus,
during this period, each SDy has been employed ex-
actly 5 times. Then, at the end of the stage, each
SDy, is updated according to:

SDy = SDy + U(I,S) : (SDh - SDk) + U(_373)
a7
where SD, is the best SD; (i.e. the one associated
to the greater succy), () is the usual sign function
returning —1, 0 or 1, and U (a, b) denotes a uniform
random integer in [a, ).

In this way, each synchronization degree SDy, is
updated partly in a pure random way and partly to-
wards the best one of previous learning stage, i.e.
SDy,. In the case that a SD; takes a value outside the
feasible domain, it is set at the violated bound (that
is 1 or NP).

As in SAA1, the counter succy is resetted af-
ter every update has been performed. Finally, note
that the amounts of variations in the update rule (17)
have been set after some preliminary experiments
conducted with population size NP = 100.

6.3 SAA3: the deterministic strategy

In SAA3, conversely from the previous de-
scribed schemes, a completely deterministic SD up-
dating procedure is implemented.

This scheme has been introduced after an analy-
sis of the impact of SD parameter on the population
diversity shrinking rate. Indeed, the experiments
conducted (see Section 7) show that small values of
SD are able to speed up the diversity shrinking rate.
Conversely, the population replacing procedure of
the two employed base algorithms increases popu-
lation diversity every 100 generations by replacing
the worst 30% of the population (see Section 4.4).
For these reasons we have decide to split the evo-
lution into different stages, each one composed by
100 generations. Therefore, in the first generation
of each stage SAA3 employs SD = NP and linearly
shades it until SD = 1 in the last generation of the
stage. More formally SD = [NP —¢ - % where
t is the current generation in the stage.
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In this way, at the begin of each stage the re-
placement procedure increases population diversity
allowing more search moves to DE and resetting
SD to NP allows to maintain relatively higher this
number of moves in the early generations of the
stage while the SD shading toward 1 speed up the
convergence by accelerating the diversity shrinkage
until the next population partial replacement is per-
formed. Finally note that this scheme implements
the famous EAs rule-of-thumb that prefers explo-
ration in early steps and exploitation in later steps

[9].

7 Experimental Results

The performances of the previously proposed
DE schemes have been evaluated on the first 15
benchmark functions proposed in [33] for the com-
petition on real-parameters optimization at CEC
2005. This benchmark suite has been widely used
for DE schemes comparison (see for example [2, 4,
25]) and it is composed by problems presenting a
variegate mix of the properties of modality, separa-
bility, regularity, and differentiability.

Each benchmark is investigated with dimen-
sionality D = 10. The allowed cap of fitness eval-
uations (NFES) is 100000, while an execution is
regarded convergent if f(x) — f(x°P") < g, where €
is 107 for the unimodal functions (fi,..., f5) and
102 for the multimodal ones (fs, ..., fi5).

Two different kind of experiments were con-
ducted. First we have analyzed the behaviour of
Asynchronous DE (ADE) without parameters adap-
tation, and then we have made a comparison among
the new proposed self-adaptive schemes (SAA¥*)
and their base algorithms (SaDE* and jDE-2) aim-
ing at point out the performances improvements ob-
tained with the introduction of a self regulatory pop-
ulation update scheme. In the following subsections
a detailed description of these experiments is pro-
vided.

7.1 Analysis of Asynchronous DE

In the analysis of Asynchronous DE (ADE)
conducted in [19], for each benchmark, different
combinations of genetic parameters (including SD
and SH) have been tested. The scale factor F' and
the crossover probability CR change from 0.2 to 1

at a step of 0.2. The population size NP lies within
20 and 100 at a step of 20. The DE learning strate-
gies considered are “rand/1/bin” and “’best/1/bin”.
The synchronization degree values tested are cho-
sen relatively to population size and they are 1,
NP/4, NP/2, 3-NP/4, NP, 3-NP/2 and 2 - NP.
Finally, also the three ordering strategies, “static”,
”dynamic”, and “’best”, have been employed.

For the convenience of the following descrip-
tion, we call the simulation of each set of genetic
parameters a trial. For each trial 100 executions
have been held in order to eliminate the random-
ness of the statistical results. In each trial, the suc-
cess rate SR (i.e. the number of convergent execu-
tions above the total number of executions) and the
average NFES of every convergent execution C are
recorded. These two indices are also synthesized in
the quality measure Q,, = C/SR introduced in [12]
and suggested in [33].

In Figures 1 and 2 the “quality graphs” for the
more significant benchmarks are provided. In each
graphs the Q,, measure values at the varying of the
synchronization degree SD are reported. Further-
more, every graph contains six curves, one for each
combination of “base vector choice”/’shuffle strat-
egy”. In this way it is possible to compare ADE
with Dynamical Differential Evolution (DDES)
[27] (reproduced by combination “best”/’static”
when SD = 1) and with classical DE (reproduced
by combinations */”’static” and */”dynamic” when
SD = NP). Finally note that the Q,, values reported
in the graphs are those obtained from the best com-
bination of the other genetic parameters, i.e. NP, F,
and CR.

These graphs show that, although smaller val-
ues of SD generally improve the performances of
the algorithm, there is no single synchronization
degree clearly superior to other ones. The choice
of the best vector as base vector used in DDES
is always the best choice throughout the unimodal
functions (fi,..., fs) while this is not true for the
multimodal ones. In the comparison with classi-
cal DE the difference of performances is even more
pronounced, since a DE equivalent combination,
“rand”/”dynamic” with SD = NP, is the best choice
only on f7 and in the other cases it is often far from
the optimum choice. Shuffle strategies ’dynamic”
and "best” are almost always better than the “static”
strategy used in DDES and in classical DE. Finally,
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note that super-synchronous SDs always led to per-
formances degrade. Anyway, for further results dis-
cussions refer to [19].

In Figure 3, the graphs related to the popula-
tion diversity evolution are reported for six selected
benchmarks: three unimodal (f;, f>, f3) and three
multimodal (f7, fo9, f11). The population diversity is
computed every offspring/trial generation as the up-
per quartile of the distribution of distances between
all pairs of solutions [20]. To avoid side effects due
to randomness, the provided results have been aver-
aged over 25 executions.

The diversity graphs provided in Figure 3
clearly show that the diversity shrinking rate is in-
versely proportional to the choice of the SD value,
both for unimodal that for multimodal problems.
Super-synchronous settings, i.e. SD > NP, present
a diversity curve too much higher and generally do
not converge (i.e. do not reach an almost zero diver-
sity) giving us an insight of why super-synchronous
ADEs are so poorly performant. Instead, differ-
ences of the diversity shrinking rates among the set-
tings of SD from 1 to NP empirically prove what
it is asserted in Section 6, i.e. that small SDs ac-
celerate diversity shrink so shifting the DE explo-
ration/exploitation balance towards exploitation.

7.2 Comparison of Self-Adaptive Asyn-
chronous DEs

Aiming at point out the performances im-
provements obtained with the introduction of self-
adaptive synchronization parameters into classical
(self) adaptive DE schemes, we have held compar-
isons among the base algorithms (SaDE*, jDE-2)
and the proposed SD and SH adaptation schemes
(SAAT1, SAA2, SAA3) implemented on top of these
two base algorithms. Moreover, results for sequen-
tial implementations of SaDE* and jDE-2 (Seq-
SaDE* and Seq-jDE-2) have also been provided.

The population size has been set to NP = 10 -
D = 100 for all the algorithms, while other sec-
ondary settings have been discussed in Sections 5
and 6. In order to eliminate the randomness of
the results, for each benchmark 25 executions have
been held.

In Tables 1 and 2, for each experiment, the same
performances measures used in the previous sub-
section have been reported, that is: success rate SR,

convergence speed C, and quality measure Q,,. In-
stead, Tables 3 and 4 provide means (f4,,) and stan-
dard deviations (f,) of the best fitness obtained in
each experiment after the allowed cap of NFES and
averaged over all the 25 executions.

Tables 1 and 2 clearly show that the proposed
SAA* schemes present better results than their
base algorithms SaDE* and jDE-2 throughout the
entire suite of benchmarks. For unimodal prob-
lems (f1,---,fs) the convergence speeds of SAA*
schemes are comparable and are always better than
that of SaDE* and jDE-2. However, it is for mul-
timodal problems (fg,---, fi5) that the difference
in performances is even more marked. Other than
a general improvement in convergence speed, the
SAA* schemes are able to reach a better success
rate than that of their base algorithms (both in gen-
erational that in sequential version) in those func-
tions that does not present a full SR, i.e. fs, f7,
fi1, fi2, fis. Since some of these functions are
separable and other ones are non-separable, we can
assert that the proposed SAA* schemes are very
versatile, other than efficient, especially on those
problems that present a certain landscape complex-
ity. Finally, note that, in two cases (f; and f9)
for SaDE*-based schemes and one case for jDE-2-
based schemes (f1), the purely sequential versions
converge faster than the others. This is likely due to
the fact that f] and fy are notoriously good bench-
marks for exploitative algorithms [33].

Also in Tables 3 and 4 we can see that SAA*
schemes presents better results than SaDE*, Seq-
SaDE*, jDE-2, and Seq-jDE-2. In benchmark f3
only our proposed schemes reach exactly the opti-
mal fitness value in every one of the 25 executions,
while for the unsolved benchmarks (those ones with
SR = 0 for every algorithm), i.e. f3, fi0, f13, f14, it
can be seen a slight positive improvement in favor
of SAA* schemes. Finally, note that the SAA* stan-
dard deviations are always comparable with those
of the respective base algorithms.

Furthermore, Table 8 reports, for each bench-
mark and for each performance measure, the best
performant DE scheme tried in this experiments
session. It clearly shows that: 1) jDE-2-based
schemes are almost always more performant than
SaDE*-based algorithms, 2) a SAA* scheme is not
the better one only in 3 results on 48 (counted with-
out considering the “none” cells), 3) SAA2-jDE-2,
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i.e. the "moving values” strategy associated with
JDE-2, seems to be the more performant and robust
scheme over the tested benchmark suite.

Finally, for completeness, in Figure 4 the evo-
lution graph of the average SD value (over 25 ex-
ecutions) has been reported for benchmark f3 and
fo (note that the first is unimodal while the sec-
ond is multimodal) and for every SAA* scheme.
While SAA3 follows the deterministic behaviour
described in Section 6.3, an important comparison
can be done between SAAl and SAA2. Indeed
SAAZ2, by continuously modifying the values of his
candidate SDs, seems to converge towards a single
synchronization degree after some iterations. In-
stead, this strong convergence does not appear in
SAAI1 that, respect to SAA2, at end of the evolu-
tion it will have a substantially greater diversity of
the SDs employed.

8 Conclusion and Future Work

This paper introduces novel techniques for self
regulating the synchronization degree of DE algo-
rithm, which can be tuned from a completely asyn-
chronous to a super-synchronous behaviour. The
paper also describes the integration of the proposed
techniques in the state-of-the-art self-adaptive DE
schemes and their experimentation with accepted
benchmarks. From the best of our knowledge this is
the first work which proposed a fully self-adaptive
ADE scheme.

ADE, introduced in [19], is a generalization of
DE scheme for handling different synchronization
mechanisms introduced by weakening the classi-
cal EA concept of generations synchronized by it-
erations. The SD parameter regulates how fast a
new candidate individual will actually becomes part
of the population, thus participating in the muta-
tion/crossover/selection process. With this general-
ization the order of individuals in the population be-
comes relevant, thus ordering strategies have been
also introduced and discussed.

New experimental results aiming at point out
the dependence of the evolution of population diver-
sity with respect to the synchronization degree have
been provided. The first session of experiments
shows that there is not a clearly superior choice of
SD and SH. For this reason three adaptation strate-

gies for SD and SH have been proposed and tested
on a variegate suite of benchmarks.

After an analysis of the state-of-the-art of (self)
adaptive non asynchronous DE proposals, we have
decided to implement the proposed self-adaptive
asynchronous (SAA) schemes on top of SaDE [26]
and jDE-2 [3]. In this way we have obtained six
different parameters-free DE schemes.

Experimental results on the proposed SAA*
schemes clearly show that our proposal improves
the performances of the two employed (self) adap-
tive DEs, thus promoting our new synchronization
parameters SD and SH to be used in future adaptive
DE models as well as in effective implementations.

Future lines of work will concern the investiga-
tion of the relationships between the synchroniza-
tion degree and the population size, other than par-
allel implementation of the proposed self-adaptive
asynchronous DE schemes, where ability of an-
ticipating or postponing the synchronization points
among generations appears to be particularly suit-
able for parallel and distribuited architectures.
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Table 1. Success Rate and Convergence Speed for SaDE*-based algorithms
SaDE* SAA1-SaDE* SAA2-SaDE* SAA3-SaDE* Seq-SaDE*
fl sr c Om SR c Onm SR c Om SR c Om SR c Om
N 1.00 24536 24536 1.00 23395 23395 1.00 23495 23495 1.00 23377 23377 1.00 22670 22670
f 1.00 56376 56376 1.00 54267 54267 1.00 52596 52596 1.00 52923 52923 1.00 54159 54159
3 1.00 54078 54078 1.00 53409 53409 1.00 52016 52016 1.00 52774 52774 1.00 53536 53536
fa 1.00 56730 56730 1.00 56203 56203 1.00 55415 55415 1.00 55134 55134 1.00 55323 55323
fs 1.00 62361 62361 1.00 59683 59683 1.00 61266 61266 1.00 60198 60198 1.00 59885 59885
J6 0.84 80452 95776 0.84 77471 92227 0.88 80659 91657 0.92 79518 86432 0.80 77406 96757
f1 0.00 — — 0.00 — — 0.00 — — 0.00 — — 0.00 — —
f3 0.00 — — 0.00 - - 0.00 - - 0.00 — — 0.00 - -
fo 1.00 55505 55505 1.00 56091 56091 1.00 55285 55285 1.00 55291 55291 1.00 54132 54132
fio| 0.00 - — | 000 - — | 0.00 - — | 0.00 - — | 000 - -
fir| 0.00 - — | 000 - — | 000 - — | 000 - — | 000 - -
fi2| 032 64570 201781 0.20 66334 331669 0.40 67680 169199 0.24 69061 287754 0.32 65765 205515
fi3| 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - -
fia| 0.00 - — | 000 - — | 0.00 — | 0.00 - — | 000 - -
fis| 0.40 75766 189414 0.40 77487 193717 0.48 79383 165381 0.56 81105 144830 0.36 77692 215811
Table 2. Success Rate and Convergence Speed for jDE-2-based algorithms
JDE-2 SAA1-jDE-2 SAA2-jDE-2 SAA3-jDE-2 Seq-jDE-2
f SR C Om SR C Om SR C Om SR C Om SR C Om
fi 1.00 17469 17469 1.00 15411 15411 1.00 15542 15542 1.00 16510 16510 1.00 15043 15043
f 1.00 26528 26528 1.00 25168 25168 1.00 24310 24310 1.00 24178 24178 1.00 24618 24618
fa 1.00 49153 49153 1.00 44419 44419 1.00 41850 41850 1.00 43947 43947 1.00 47222 47222
fa 1.00 28934 28934 1.00 27825 27825 1.00 26131 26131 1.00 27784 27784 1.00 28428 28428
fs 1.00 50487 50487 1.00 45081 45081 1.00 44210 44210 1.00 47748 47748 1.00 45928 45928
fe 0.84 78840 93857 1.00 76333 76333 0.96 75891 79053 0.88 75366 85643 0.92 70256 76365
f1 0.00 — — 0.04 67123 1678075 0.16 66598 416237 0.00 — — 0.00 — —
fs 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - -
fo 1.00 56511 56511 1.00 56568 56568 1.00 53472 53472 1.00 56686 56686 1.00 56360 56360
fio| 0.00 - — | 0.00 - — | 0.00 - — | 000 - — | 0.00 - -
fi1 0.00 — — 0.08 85398 1067475 0.16 79968 499800 0.04 68357 1708924 0.00 — —
fi2| 0.40 25430 63574 0.76 27990 36828 0.64 23123 36129 0.48 23887 49764 0.32 30486 95268
fiz| 0.0 - — | 0.00 - — | 0.00 - — | 0.00 - — | 0.00 - -
fia| 0.00 - — | 0.00 - — | 0.00 - — | 0.00 - — | 0.00 - -
fis| 0.44 69582 158140 0.44 67340 153045 0.64 59574 93084 0.36 68507 108741 0.32 63866 122819
Table 3. Fitness Mean and Standard Deviation for SaDE*-based algorithms
SaDE* SAA1-SaDE* SAA2-SaDE* SAA3-SaDE* Seq-SaDE*
f fe avg fstd fa Vg fstd J ‘avg fsta S k»’g fstd f avg Sstd
fi 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0
f3] 1.1102e—18 5.4389e—18 | 6.2172¢—17 3.0458e—16 0 0 4.6629¢e—17 2.2843e—16 | 2.4424e—17 1.1965¢—16
fa | 2.6645e—17 1.3053e—16 0 0 0 0 0 0 0 0
f5| 1.1144e—12  1.4723e—12 | 5.2267e—13 6.7305e—13 | 5.2067e—12 1.0175e—11 | 3.0193e—12 7.0921e—12 | 1.4483e—12 1.9065e—12
fe 0.2103 0.5172 1.2269 3.7548 0.0451 0.1513 0.1806 0.6993 0.59687 1.4105
f1 0.0836 0.0428 0.1039 0.0384 0.0916 0.0246 0.0963 0.0287 0.1050 0.0350
13 20.3374 0.0957 20.3517 0.0723 20.3433 0.0544 20.3631 0.0666 20.3551 0.0570
fo| 2.2766e—10 8.2403e—10 | 5.5431e—10 1.4401e—09 | 7.704le—11 7.0494e—11 | 1.4757e—10 4.1397e—10 | 3.3202e—11 3.5723e—11
fio 6.4609 1.6112 5.8444 1.0975 5.7051 1.5475 6.8287 1.8395 5.7038 1.2800
f11 5.1632 0.6935 5.3098 0.6083 5.0311 0.8144 5.2764 0.6915 5.0011 0.8059
fi2|  97.9075 304.4790 243.1590 474.5190 110.0370 326.4010 58.0018 140.5620 93.8410 264.8670
f13 0.4142 0.0539 04112 0.0569 0.4258 0.0415 0.4087 0.0703 04118 0.0504
fla 3.2019 0.1807 3.2456 0.1852 3.1488 0.1679 3.1321 0.1668 3.1908 0.19682
fis|  114.5900 167.1930 89.7238 146.0920 64.5462 146.4120 32.3387 108.4200 102.2050 156.9940
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Table 4. Fitness Mean and Standard Deviation for jDE-2-based algorithms

JDE-2 SAA1-jDE-2 SAA2-jDE-2 SAA3-jDE-2 Seq-jDE-2
f Savg Sstd favg Sstd favg fsa Javg Sstd Javg Sstd
fi 0 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0 0 0
f3 | 2.6662e—14  1.3061e—13 0 0 0 0 0 0 4.1718e—11  2.0437e—10
fa 0 0 0 0 0 0 0 0 0 0
f5 | 3.8369e—14  6.4915e—14 | 7.1054e—16 1.4862e—15 | 8.8817e—16 1.0986e—16 | 1.2008e—14 2.9106e—14 | 1.1297e—14 2.8878e—14
fo| 04793 1.2955 0.0002 0.0011 0.0006 0.0022 0.6347 1.3685 0.3189 1.0815
f7| 0.0662 0.0393 0.0436 0.0213 0.0460 0.0217 0.0843 0.0550 0.1096 0.0929
fs| 203650 0.0715 20.3388 0.0792 203092 0.0520 20.3490 0.0899 20.3449 0.0880
fo | 2.1316e—16 8.725%—16 | 6.4392e—17 3.0485e—17 0 0 1.7763e—17  4.1451e—17 | 3.3306e—18 1.1957e—17
fio|  5.8597 2.3546 5.7462 2.3791 5.6980 1.6245 6.8219 22071 6.7305 20111
ful|  5.5066 2.5336 3.9630 1.0746 2.9938 1.1891 4.6060 2.1340 5.3637 1.4770
fi2| 2243810 528.9390 69.9111 331.5130 69.7111 3524890 | 307.7210  604.8980 | 362.5440  602.5320
fi3|  0.5656 0.1043 0.5910 0.1037 0.5342 0.0558 0.5785 0.0941 0.5401 0.0825
fia| 33170 0.2912 3.2002 0.1939 3.0715 0.2547 3.1456 0.2612 3.1396 0.2607
fis| 2125410 1971460 | 232.0000  193.3290 | 162.4710 98.8400 1945410 161.5390 | 192.0000  199.8400
Table S. Synthesis of the more performant schemes

f Javg SR C Om

f all all Seq-jDE-2 Seq-jDE-2

f all all SAA3-jDE-2 SAA3-jDE-2

bE SAA{1,2,3}-jDE-2, SAA2-SaDE* all SAA2-jDE-2 SAA2-jDE-2

fa all except SaDE* all SAA2-jDE-2 SAA2-jDE-2

/s SAAI1-jDE-2 all SAA2-jDE-2 SAA2-jDE-2

fs SAAI1-jDE-2 SAAI1-jDE-2 Seq-jDE-2 SAAI1-jDE-2

e SAA1-jDE-2 SAA2-DE-2 SAA2-jDE-2 SAA2-jDE-2

13 SAA2-jDE-2 none none none

fo SAA2-jDE-2 all SAA2-jDE-2 SAA2-jDE-2

fio SAA2-JDE-2 none none none

fil SAA2-jDE-2 SAA2-iDE-2 SAA3-jDE-2 SAA2-jDE-2

fi2 SAA3-SaDE* SAA1-DE-2 SAA2-jDE-2 SAA2-jDE-2

f13 SAA3-SaDE* none none none

fia SAA2-jDE-2 none none none

fis SAA3-SaDE* SAA2-jDE-2 SAA2-jDE-2 SAA2-jDE-2
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