PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energetic & exergetic analysis of a parabolic trough: concentrated solar power plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solar energy is the most affordable source of energy. Parabolic trough systems are used to concentrate and extract heat, therefore it’s very significant to analyse its performance in terms of energy and exergy. Exergy based analysis of the system ensures the eradication of losses, resulting in the yield of energy of the highest quality. In this paper, an investigation has been carried out using numerical simulation with an objective of analysis of Parabolic Trough Collectors on the basis of energy and exergy. Detailed second law analysis has been performed by varying the system and operating parameters through computer simulation. Exergy output has been determined by analysing the effect of major system parameters, namely, mirror reflectivity, glass transmissivity, absorptivity, the diameter of glass envelop, and the receiver. The operating parameters considered in the investigation are insolation and temperature rise parameters. The extensive investigation of the parabolic trough of a concentrated solar power plant for various design parameters in the range of operating parameters reveals that it is beneficial to operate the system at higher temperature as opposed to the preference of the operating system at lower temperature from purely thermal considerations.
Twórcy
autor
  • University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India
  • University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India
autor
  • Shri Vishwakarma Skill University, Haryana, India
Bibliografia
  • [1] F. Lippke, Simulation of the part-load behavior of a 30 MWe SEGS plant, United States, 1995. https://doi.org/doi.org/10.2172/95571.
  • [2] S. Kalogirou, S. Lloyd, J. Ward, Modelling, optimisation and performance evaluation of a parabolic trough solar collector steam generation system, Sol. Energy. 60 (1997) 49–59. https://doi.org/10.1016/S0038-092X(96)00131-4.
  • [3] E. Zarza, L. Valenzuela, J. León, K. Hennecke, M. Eck, H.D. Weyers, M. Eickhoff, Direct steam generation in parabolic troughs: Final results and conclusions of the DISS project, Energy. 29 (2004) 635–644. https://doi.org/10.1016/S0360-5442(03)00172-5.
  • [4] E. Prabhu, Solar trough Organic Rankine electricity system (STORES) stage 1: power plant Optimization and economics, California, 2006.
  • [5] Z. Wu, S. Li, G. Yuan, D. Lei, Z. Wang, Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver, Appl. Energy. 113 (2014) 902–911. https://doi.org/10.1016/j.apenergy.2013.07.050.
  • [6] D. Canavarro, J. Chaves, M. Collares-Pereira, New optical designs for large parabolic troughs, Energy Procedia. 49 (2014) 1279–1287. https://doi.org/10.1016/j.egypro.2014.03.137.
  • [7] A.M. De Oliveira Siqueira, P.E.N. Gomes, L. Torrezani, E.O. Lucas, G.M. Da Cruz Pereira, Heat transfer analysis and modeling of a parabolic trough solar collector: An analysis, Energy Procedia. 57 (2014) 401–410. https://doi.org/10.1016/j.egypro.2014.10.193.
  • [8] L. Guzman, A. Henao, R. Vasqueza, Simulation and optimization of a parabolic trough solar power plant in the city of Barranquilla by using system advisor model (SAM), Energy Procedia. 57 (2014) 497–506. https://doi.org/10.1016/j.egypro.2014.10.203.
  • [9] A. Messai, Y. Benkedda, S. Bouaichaoui, M. Benzerga, Feasibility study of parabolic trough solar power plant under Algerian climate, Energy Procedia. 42 (2013) 73–82. https://doi.org/10.1016/j.egypro.2013.11.007.
  • [10] A.S. Pidaparthi, N.R. Prasad, India’s first solar thermal parabolic trough pilot power plant, Energy Procedia. 49 (2014) 1840–1847. https://doi.org/10.1016/j.egypro.2014.03.195.
  • [11] M. Douani, A. Labbaci, H. Hadj Benaichouche, Analysis of the energetic feasibility of parabolic trough collectors integrated in solar towers in Adrar area, Energy Procedia. 36 (2013) 1085–1100. https://doi.org/10.1016/j.egypro.2013.07.124.
  • [12] P. Daniel, Y. Joshi, A.K. Das, Numerical investigation of parabolic trough receiver performance with outer vacuum shell, Sol. Energy. 85 (2011) 1910–1914. https://doi.org/10.1016/j.solener.2011.04.032.
  • [13] J. Muñoz, J.M. Martinez-Val, A. Ramos, Thermal regimes in solar-thermal linear collectors, Sol. Energy. 85 (2011) 857–870. https://doi.org/10.1016/j.solener.2011.02.004.
  • [14] M. Eck, T. Hirsch, Dynamics and control of parabolic trough collector loops with direct steam generation, Sol. Energy. 81 (2007) 268–279. https://doi.org/10.1016/j.solener.2006.01.008.
  • [15] A. El Fadar, A. Mimet, M. Pérez-García, Modelling and performance study of a continuous adsorption refrigeration system driven by parabolic trough solar collector, Sol. Energy. 83 (2009) 850–861. https://doi.org/10.1016/j.solener.2008.12.003.
  • [16] I. Llorente García, J.L. Álvarez, D. Blanco, Performance model for parabolic trough solar thermal power plants with thermal storage: Comparison to operating plant data, Sol. Energy. 85 (2011) 2443–2460. https://doi.org/10.1016/j.solener.2011.07.002.
  • [17] C.Y. Tsai, P.D. Lin, Optimized variable-focus-parabolic-trough reflector for solar thermal concentrator system, Sol. Energy. 86 (2012) 1164–1172. https://doi.org/10.1016/j.solener.2012.01.009.
  • [18] M.K. Gupta, S.C. Kaushik, Exergy analysis and investigation for various feed water heaters of direct steam generation solar-thermal power plant, Renew. Energy. 35 (2010) 1228–1235. https://doi.org/10.1016/j.renene.2009.09.007.
  • [19] I.H. Aljundi, Energy and exergy analysis of a steam power plant in Jordan, Appl. Therm. Eng. 29 (2009) 324–328. https://doi.org/10.1016/j.applthermaleng.2008.02.029.
  • [20] V.S. Reddy, S.C. Kaushik, S.K. Tyagi, Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP), Energy. 39 (2012) 258–273. https://doi.org/10.1016/j.energy.2012.01.023.
  • [21] S. Bespalko, A.M. Miranda, O. Halychyi, Overview of the existing heat storage technologies: sensible heat, Acta Innov. (2018) 82–113. https://doi.org/10.32933/actainnovations.28.8.
  • [22] R. Petela, Exergy of heat radiation, J. Heat Transfer. 86 (1964) 187–192. https://doi.org/10.1115/1.3687092.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e14a5fc-ced9-447b-8729-c2e4b44e32c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.