Identyfikatory
Warianty tytułu
Teoretyczna analiza nawadniania gleb o różnych strukturach
Języki publikacji
Abstrakty
This paper reports the results of research into water flow in three various soil types. Soil data were obtained on the basis of a classification by Wösten and van Genuchten [38]. The mathematical model of water flow in soil was formulated using Richards’ equation. The data for hydraulic conductivity and suction pressure of unsaturated soil were obtained using the van Genuchten model. The method of finite difference and an original calculation program were applied to solve equations. The time of water transfer through soil and depth of groundwater enabling water transport to root-zone were studied. These phenomena were examined for different boundary conditions. The unsteady character of irrigation process was analyzed. Water flow in soil following short-term and intense precipitation was one of analyzed problems.
W artykule zaprezentowano wyniki badań dotyczących przepływu wody w trzech różnych typach gleb. Dane dotyczące badanych gleb uzyskano na podstawie publikacji Wöstena i van Genuchtena [39]. Matematyczny model przepływu wody został sformułowany przy wykorzystaniu równania Richardsa. Dane dla przewodności hydraulicznej oraz ciśnienia ssącego gleby nienasyconej otrzymano wykorzystując model van Genuchtena. W celu rozwiązania równania Richardsa wykorzystano metodę różnic skończonych przy zastosowaniu oryginalnego programu obliczeniowego. Zbadano czas przepływu wody przez glebę oraz głębokość wody gruntowej pozwalających na transport wody do strefy korzeni. Zjawiska te zostały zbadane dla różnych warunków brzegowych. Poddano analizie nieustalony charakter procesu nawadniania. Ponadto jednym z problemów poddanych analizie był przepływ wody w glebie po krótkotrwałych i intensywnych opadach.
Rocznik
Tom
Strony
15--22
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
autor
- Opole University of Technology, Department of Thermal Engineering and Industrial Facilities
autor
- Opole University of Technology, Department of Thermal Engineering and Industrial Facilities
Bibliografia
- [1] Bhatnagar P.R., Chauhan H.S. (2008): Soil water movement under a single surface trickle source. Agricultural Water Management, 95: 799-808.
- [2] Brooks R., H., Corey A. T. (1996): Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division, 2: 61-88.
- [3] Chalfen M. (1990): Matematyczny model nieustalonego ruchu wód podziemnych z uwzględnieniem obiektów melioracyjnych oraz ujęć wody. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu, No. 192: 25-38.
- [4] Cook F.J., Fitch P., Thorburn P.J., Charlesworth P.B., Bristow K.L. (2006): Modeling trickle irrigation. Comparison of analytical and numerical model for estimation of wetting front position with time. Environmental Modelling and Software, 21: 1353-1359.
- [5] Elmaloglou S., Diamantopoulos E. (2008): The effects of intermittent water application by surface point sources on the soil moisture dynamics and on deep percolation under root zone. Computer and Electronics in Agriculture, 62: 266-275.
- [6] Estaves M., Faucher X., Galles S., Vauclin M. (2000): Overland flow and infiltration modeling for small plots during unsteady rain: numerical results versus observed values. Journal of Hydrology, 228, 265-282.
- [7] Feddes R.A., Bresler E., Neuman S.P. (1974): Field test of a modified numerical model for water uptake by root system. Water Resources Research, Vol. 10, No. 6: 1190-1206.
- [8] Fazeli M., Shorafa M., Khojasteh D.N., Pilevar Shahri A.R. (2010): A fractal approach for estimating water retention curve. Journal of Soil Science and Environmental Management, Vol. 1(7).
- [9] Fletcher C. (1991): Computational techniques for fluid dynamics.1. Fundamental and general techniques. Springer Verlag, Berlin.
- [10] Gardner W.R. (1956): Calculation of capillary conductivity from pressure plate outflow data, Soil Science Society of America Journal, Vol. 20 No. 3: 317-320.
- [11] Gottardi G., Venutelli M. (2001): UPF: two-dimensional finite-element groundwater flow model for saturatedunsaturated soils. Computers&Geosciences, 27, 179-198.
- [12] Iwanek M., Kowalski D., Olszta W. (2004): Calculation of hydraulic conductivity coefficient with the van GenuchtenMaulem method in depend on the pF curve parameters (in Polish). Acta Agrophysica, 3(3).
- [13] Kandelous M.M., Šimůnek J. (2010): Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D. Agricultural Water Management, 97: 1070-1076.
- [14] Kanzari S., Hachicha M., Bouhila R., Battle-Sales J. (2012): Characterization and modeling of water movement and salts transfer in semi-arid region of Tunisia (Bou Hajla Kairouan) - Salinization risk of soils and aquifers. Computers And Electronic in Agriculture, 86: 32-42.
- [15] Kowalik P. (2012): Protection of soil environment (in Polish). PWN Warszawa.
- [16] Kuczuk. A., Pospolita J. (2014): Modelling of water flow in soil. Journal of Research and Applications in Agicultural Engineering, Vol. 50(4): 26-30.
- [17] Kumar R., Jat M.K., Shanker V. (2013): Evaluation of modeling of water ecohydrologic dynamics in soil-root system. Ecological Modelling, 269: 51-60.
- [18] Lewandowska J., Szymkiewicz A., Auriault J. (2005): Upscaling of Richards’ equation for soils containing highly conductive inclusions. Advances in Water Resources, 28: 11591170.
- [19] Manzini G., Ferraris S. (2004): Mass-conservative finite volume methods on 2-D unstructured grids for the Richards equation. Advances in Water Resources. 27: 1199-1215.
- [20] Nguyen H.V., Nieber J.L., Ritsema C.J., Dekker L.W., Steenhius T.S. (1999): Modeling gravity driven unstable flow in a water repellent soil. Journal of Hydrology. 215: 202-214.
- [21] Pospolita J. (1991). Numerical analysis of viscoelastic fluid flux trough the orifice. Archives of Mechanics. Warszawa, 43,6: 743-751.
- [22] Panday S., Huyakorn P. (2004): A fully coupled physically - based spatially - distributed model for evaluating surface/subsurface flow. Advances in Water Resources, 27: 361382.
- [23] Phi. S., Clarke W., Li L. (2013): Laboratory and numerical investigations of hill slope soil saturation development and runoff generation over rainfall events, Journal of Hydrology. 493: 1-15.
- [24] Sadeghi M., Tuller M., Gohardoust M.R., Jones S.B. (2014): Column-scale unsaturated hydraulic conductivity estimates in coarse-textured homogeneous and layered soils derived under steady-state evaporation from water table. Journal of Hydrology, 519: 1238-1248.
- [25] Saleh E., Setiawan B.I. (2010): Numerical modeling of soil moisture profiles under pitcher irrigation application. Agricultural Engineering International: CIRG Journal, 14, Vol. 12, No.2: 14-20.
- [26] Sławiński C. (2003): Influence of solid chase parameters on values of hydraulic conductivity coefficient (in Polish). Acta Agrophysica, Nr 90, Rozprawy i Monografie, Lublin.
- [27] Szajda J., Olszta W., Kowalski D. (2003): Climatic and soilwater environment indicators of dehydrated peat soils ecosystem in aspects of sustainable development (in Polish). Acta Agrophysica, 1(4): 759-765.
- [28] Szulczewski W. (2003): Contamination migration model ling in the unsaturated porous media (in Polish). Zeszyty Naukowe Akademii Rolniczej we Wrocławiu, Nr 466.
- [29] Szymkiewicz A. (2013): Modeling water flow in unsaturated porous media - accounting for non-linear permeability and material heterogeneity. Springer.
- [30] Szymkiewicz A., Helmig R. (2011): Comparison of conductivity averaging methods for one-dimensional unsaturated flow in layered soils. Advances in Water Resources, 34: 1012-1025.
- [31] Tan X., Shao D., Liu H. (2014): Simulating soil water regime in low land paddy fields under different water managements using HYDRUS-1D. Agricultural Water Management, 132: 69-78.
- [32] Uggla H. (1981): Agricultural science of soil (in Polish). PWN, Warszawa.
- [33] van Dam J.C., Feddes R.A. (2000): Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation. Journal of Hydrology, 233: 72-85.
- [34] van Genuchten M.Th. (1980): A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of American Journal, 44: 892-898.
- [35] Vogel. T., Gerke H.H., Zhang R., van Genuchten N.Th. (2000): Modeling flow and transport in a two-dimensional dual-permeability system with spatially variable hydraulic properties. Journal of Hydrology, 238: 78-79.
- [36] Vogel T., van Genuchten M.Th., Cislerova M. (2001): Effect of shape of the soil hydraulic near saturation on variablysaturated flow predictions. Advances in Water Resources, 24: 133-144.
- [37] Wösten J.H.M., Bannink M.H., de Gruijter J.J., Bouma J. (1986): A procedure to indentify different groups of hydraulic conductivity and moisture-retention curves for soil horizons. Journal of Hydrology, Vol. 86, Issues 1-2: 133-145.
- [38] Wösten J.H.M., van Genuchten M.Th. (1988): Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Division S-6-soil and water management and conservation. Soil Science Society of American Journal, 52: 1762-1770.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e0de23a-da7f-4921-a9cb-07f2fbe5f8ed