Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study presents vibration analysis for a beam with an auxetic cross-section. In order to verify damping properties of auxetic materials, the numerical results were compared with classical H-beam which has basic geometry. The response of analyzed models was considered with taking into account the Rayleigh damping of the internal material structure. Performed calculations comprise deformation of the certain beam, selected points displacement and vibration transmission loss coefficient. The analysis was carried out by means of Finite Element Method using Comsol Multiphysics software.
Czasopismo
Rocznik
Tom
Strony
art. no. 2018031
Opis fizyczny
Bibliogr. 17 poz., il., wykr.
Twórcy
autor
- Poznan University of Technology, Institute of Applied Mechanics, ul. Jana Pawła II 24, 60-965 Poznan
autor
- Poznan University of Technology, Institute of Applied Mechanics, ul. Jana Pawła II 24, 60-965 Poznan
Bibliografia
- 1. Y. Liu, H. Hu, A review on auxetic structures and polymeric materials, Sci. Res. Essays, 5 (2010) 1052 - 1063.
- 2. H. R. Joshi, Finite Element Analysis of effective mechanical properties, vibration and acoustic performance of auxetic chiral core sandwich structures, All Theses., Clemson University, Clemson, South Carolina, 2013.
- 3. F. Scarpa, L. G. Ciffo, J. R. Yates, Dynamic properties of high structural integrity auxetic open cell foam, Smart Mater. Struct., 13(1) (2004).
- 4. T. Strek, H. Jopek, M. Nienartowicz, Dynamic response of sandwich panels with auxetic cores, Phys. Status Solidi B, 252(7) (2015) 1540 - 1550.
- 5. X. Zhang, D. Yang, Mechanical Properties of Auxetic Cellular Material Consisting of Re-Entrant Hexagonal Honeycombs, Materials (Basel), 9(11) (2016) 900.
- 6. T. C. Lim, Auxetic Materials and Structures, Springer-Verlag, Singapur, 2015.
- 7. A. Spadoni, M. Ruzzene, Structural and Acoustic Behavior of Chiral Truss-Core Beams, Journal of Vibration and Acoustics, 128(5) (2016) 616 - 626.
- 8. M. Ruzzene, Vibration and sound radiation of sandwich beams with honeycomb truss core, Journal of Sound and Vibration, 277(4-5) (2004) 741 - 763.
- 9. C. F. Ng, C. K. Hui, Low frequency sound insulation using stiffness control with honeycomb panels, Applied Acoustics, 69(4) (2008) 293 - 301.
- 10. D. C. Griese, Finite Element Modeling and Design of Honeycomb Sandwich Panels for Acoustic Performance, Clemson University, 2012.
- 11. A. Spadoni, M. Ruzzene, Elasto-static micropolar behavior of a chiral auxetic lattice, Journal of the Mechanics and Physics of Solids, 60(1) (2012) 156 - 171.
- 12. E. Idczak, T. Strek, Dynamic Analysis of Optimized Two-Phase Auxetic Structure, Vibrations in Physical Systems, 28 (2017) 2017003-01-20017003-12.
- 13. E. Idczak, T. Stręk, Computational Modelling of Vibrations Transmission Loss of Auxetic Lattice Structure, Vibrations in Physical Systems, 27 (2016) 124 - 128.
- 14. F. Scarpa, J. Giacomin, Y. Zhang, P. Pastorino, Mechanical Performance of Auxetic Polyurethane Foam for Antivibration Glove Applications, Cellular Polymers, 24(5) (2005) 253 - 268.
- 15. M. Bianchi, F. Scarpa, Vibration transmissibility and damping behaviour for auxetic and conventional foams under linear and nonlinear regimes, Smart Mater. Struct. 22 (2013) 084010.
- 16. A. Alipour, F. Zareian, Study Rayleigh Damping in Structures; Uncertainties and Treatments, Beijing, China, 2008.
- 17. Z. Song, C. Su, Computation of Rayleigh Damping Coefficients for the Seismic Analysis of a Hydro-Powerhouse, Shock and Vibration, 2017 (2017) 2046345.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e09f62a-e44b-428d-be1c-45816ba5c718