PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of absolute real-time multi-GNSS kinematic positioning

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, we observe the rapid development of the Global Navigational Satellite Systems (GNSS), including autonomous positioning techniques, such as Precise Point Positioning (PPP). The GNSS have different conceptions, different spacecraft and use different types of orbits which is why the quality of real-time orbit and clock products is inconsistent, thus, the appropriate approach of the multi-GNSS observation processing is needed to optimize the solution quality. In this paper, the kinematic field experiment is conducted in order to examine multi-GNSS real-time Standard Point Positioning (SPP) and PPP performance. The test was performed on the 26 km-long car route through villages, forests, the city of Wrocaw, crossing under viaducts and a high tension line. For the first time, the solution is based on GPS + GLONASS + Galileo + BeiDou observations using streamed corrections for orbits and clocks with two different weighting scenarios. Thanks to the usage of the multi-GNSS constellation the number of positioning epochs possible to determine increases by 10%. The results show also that the appropriate weighting approach can improve the root mean square error in the SPP solution by about 13% and 42% for the horizontal and vertical coordinate components, respectively. In the case of PPP, the maximum quality improvement equals 70% for the horizontal component and the results for the vertical component are comparable with those obtained for the GPS-only solution.
Słowa kluczowe
Rocznik
Strony
75--88
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Institute of Geodesy and Geoinformatics, Wrocaw University of Environmental and Life Sciences C.K. Norwida 25, 50-357 Wrocaw, Poland
Bibliografia
  • Aughey RJ., and Falloon C (2010). Real-time versus post-game GPS data in team sports, Journal of Science and Medicine in Sport, 13, 348-349, doi: 10.1016/j.jsams.2009.01.006.
  • Bisnath S., and Gao Y (2009). Current State of Precise Point Positioning and Future Prospects and Limitations,. In: Observing our Changing Earth. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 615-623.
  • Dow JM., Neilan RE., and Rizos C (2009). The International GNSS Service in a changing landscape of Global Navigation Satellite Systems,. J. Geod. 83:191-198.
  • Geng J., Teferle FN., Meng X., and Dodson AH (2010). Kinematic precise point positioning at remote marine platforms, GPS Solutions, 14, 343-350, doi: 10.1007/s10291-009-0157-9.
  • Groves PD (2011). Shadow matching: A new GNSS positioning technique for urban canyons, Journal of Navigation, 64, 417-430, doi: 10.1017/S0373463311000087.
  • Guo J., Li X., Li Z., Hu L., Yang G., Zhao C., Fairbairn D., Watson D., and Ge M (2018). Multi-GNSS precise point positioning for precision agriculture, Precision Agriculture, 1-17, doi: 10.1007/s11119-018-9563-8.
  • Hadas T (2015). GNSS-Warp Software for Real-Time Precise Point Positioning, Artificial Satellites, 50, 59–76, doi: 10.1515/arsa-2015-0005.
  • Hadas T., and Bosy J (2015). IGS RTS precise orbits and clocks verification and quality degradation over time, GPS Solutions, 19, 93-105, doi: 10.1007/s10291-014-0369-5.
  • Hadas T., Teferle FN., Kazmierski K., Hordyniec P., and Bosy J (2017). Optimum stochastic modeling for GNSS tropospheric delay estimation in real-time, GPS Solutions, 21, 1069-1081, doi: 10.1007/s10291-016-0595-0.
  • He H., Li J., Yang Y., Xu J., Guo H., and Wang A (2014). Performance assessment of singleand dual-frequency BeiDou/GPS single-epoch kinematic positioning, GPS Solutions, 18, 393-403, doi: 10.1007/s10291-013-0339-3.
  • Hernández-Pajares M., Juan JM., Sanz J., Orús R., García-Rodríguez A., and Colombo OL (2004). Wide area real time kinematics with Galileo and GPS signals,. In: 17th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2004. pp 2541-2554.
  • Héroux P., Gao Y., Kouba J., and Lahaye F (2004). Products and applications for Precise Point Positioning-Moving towards real-time,. In: Proc. ION ITM 2004, Institute of Navigation, Long Beach, CA, USA, September 21-24,. pp 1832-1843.
  • Hu Y., Cheng L., and Wang X (2016). Quality analysis of the campaign GPS stations observation in Northeast and North China,. doi: 10.1016/j.geog.2016.03.008.
  • IGS (2015). RTCM-SC104, RINEX-The Receiver Independent Exchange Format (Version 3.03).
  • Kazmierski K., Hadas T., and Sonica K (2018a). Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning, Remote Sensing, 10, 84, doi: 10.3390/rs10010084.
  • Kazmierski K., Sonica K., and Hadas T (2018b). Quality assessment of multi-GNSS orbits and clocks for real-time precise point positioning, GPS Solutions, 22, 11, doi: 10.1007/s10291-017-0678-6.
  • Knoop VL., de Bakker PF., Tiberius CCJM., and van Arem B (2017). Lane Determination With GPS Precise Point Positioning, IEEE Transactions on Intelligent Transportation Systems, 18, 2503-2513, doi: 10.1109/TITS.2016.2632751.
  • Kouba J (2015). A Guide to using international GNSS Service ( IGS ) Products, Geodetic Survey Division Natural Resources Canada Ottawa, 6, 34.
  • Lachapelle G., Casey M., Eaton M., Kleusberg A., Tranquilla J., and Wells D (1987). GPS Marine Kinematic Positioning Accuracy and Reliability,. In: Proceedings International Symposium on Marine Positioning. Springer Netherlands, Dordrecht, pp 113-147.
  • Laurichesse D (2011). The CNES Real-time PPP with undifferenced integer ambiguity resolution demonstrator,. In: ION GNSS. Portland.
  • Leandro RF., Langley RB., and Santos MC (2008). UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques, GPS Solutions, 12, 65-70, doi: 10.1007/s10291-007-0077-5.
  • Loyer S., Perosanz F., Mercier F., Capdeville H., and Marty J-C (2012). Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center, Journal of Geodesy, 86, 991-1003, doi: 10.1007/s00190-012-0559-2.
  • Martín A., Anquela AB., Dimas-Pagés A., and Cos-Gayón F (2015). Validation of performance of real-time kinematic PPP. A possible tool for deformation monitoring, Measurement, 69, 95–108, doi: 10.1016/J.MEASUREMENT.2015.03.026.
  • Martinez FG., and Waller P (2009). GNSS clock prediction and integrity,. In: 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum. IEEE, pp 1137-1142.
  • Montenbruck O., Steigenberger P., Khachikyan R., Weber G., Langley R., Mervart L., and Hugentobler U (2014). IGS-MGEX Preparing the Ground for Multi-COnstellation GNSS Science, Inside GNSS, 42-49.
  • Paziewski J., Sieradzki R., and Baryla R (2018). Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: application to precise dynamic displacement detection, Measurement Science and Technology, 29, 35002, doi: 10.1088/1361-6501/aa9ec2.
  • Petit G., and Luzum B (2010). IERS Conventions, Bureau International Des Poids Et Mesures Sevres (France), ISBN 3-898, 179.
  • Prange L., Orliac E., Dach R., Arnold D., Beutler G., Schaer S., and Jäggi A (2017). CODE’s five-system orbit and clock solution-the challenges of multi-GNSS data analysis, Journal of Geodesy, 91, 345-360, doi: 10.1007/s00190-016-0968-8.
  • Realini E., Caldera S., Pertusini L., and Sampietro D (2017). Precise GNSS Positioning Using Smart Devices, Sensors, 17, 2434, doi: 10.3390/s17102434.
  • Rieke M., Foerster T., Geipel J., and Prinz T (2011). High-precision positioning and real-time data processing of UAV systems, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 28, 6, doi: 10.5194/isprsarchives-XXXVIII-1-C22-119-2011.
  • Rietdorf A., Daub C., and Loef P (2006). Precise Positioning in Real-Time using Navigation Satellites and Telecommunication, Procedings of the 3rd Workshop on Positioning, Navigation and Communication, 123-128.
  • Tang X., Roberts GW., Li X., and Hancock CM (2017). Real-time kinematic PPP GPS for structure monitoring applied on the Severn Suspension Bridge, UK, Advances in Space Research, 60, 925-937, doi: 10.1016/J.ASR.2017.05.010.
  • Tayari E., Jamshid AR., and Goodarzi HR (2015). Role of GPS and GIS in precision agriculture, Journal of Scientific Research and Development, 2, 157-162.
  • Teunissen PJG., and Montenbruck O (eds) (2017). Springer Handbook of Global Navigation Satellite Systems,. Springer International Publishing, Cham.
  • Tomoji T (2007). RTKLIB: An open source program package for GNSS positioning.
  • Wang L., Li Z., Ge M., Neitzel F., Wang Z., and Yuan H (2018). Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service, Remote Sensing, 10, 337, doi: 10.3390/rs10020337.
  • Weber G., and Mervart L (2009). The BKG Ntrip Client (BNC),. Mitteilungen des Bundesamtes fuer Kartographie und Geod.
  • Xu G (2016). GPS: Theory, algorithms and applications, Third edit.
  • Yang F., Li L., Zhao L., and Cheng C (2017). GPS/BDS Real-Time Precise Point Positioning for Kinematic Maritime Positioning,. Springer, Singapore, pp 295-307.
  • Zumberge JF., Heflin MB., Jefferson DC., Watkins MM., and Webb FH (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research: Solid Earth, 102, 5005–5017, doi: 10.1029/96JB03860.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e07c2e2-12b5-4db4-87d0-58f2ae1b56cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.