Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Swobodne wyginanie się elementów żelbetowych pod wpływem nierównomiernego ogrzewania
Języki publikacji
Abstrakty
The paper presents the test description and results of thermal bowing of RC beams exposed to non-uniform heating at high temperature. Bending of a non-uniformly heated element is caused by free thermal elongation of the material it is made of. The higher the temperature gradient, the greater the bending. In the case when an element is exposed to load and high temperature simultaneously, apart from free bending also deformation of the RC element may occur, which is caused by the decrease of the concrete or reinforcing steel mechanical properties. In order to examine the contribution of the deflection caused by thermal bowing to the total deformation of the bent element with a heated tension zone, an experimental study of freely heated (unloaded) beams was performed. RC beams were heated: (1) on three sides of the cross-section or (2) only on the bottom side. Deflection of elements loaded by a substitute temperature gradient was calculated using the Maxwell-Mohr formula. The test results show that deflection of freely heated RC beams (caused by the thermal bowing phenomenon) can be 10 to 20% of the total deflection of loaded RC beams with a heated tension zone.
W artykule przedstawiono opis i wyniki badań swobodnego wyginania się belek żelbetowych narażonych na nierównomierne ogrzewanie w temperaturze pożarowej. Elementy żelbetowe ogrzewane nierównomiernie wyginają się na skutek swobodnej wydłużalności termicznej materiału, a wygięcie jest tym większe, im większy jest gradient temperatury w przekroju. W literaturze zjawisko to jest nazywane thermal bowing. Zachodzi ono niezależnie od obciążenia elementu. W statycznie niewyznaczalnych elementach zginanych może ono powodować powstawanie dodatkowych sił wewnętrznych, a w elementach ściskanych (słupach) zwiększenie mimośrodu siły podłużnej. W elementach wytężonych podczas ogrzewania, oprócz swobodnego wyginania się powstają jeszcze deformacje spowodowane pogorszeniem właściwości mechanicznych betonu lub stali. W celu określenia, jaką część całkowitej deformacji wytężonego elementu ogrzewanego nierównomiernie od strony strefy rozciąganej może stanowić ugięcie wywołane zjawiskiem thermal bowing, przeprowadzono badania wyginania się nieobciążonych belek żelbetowych. W sumie zbadano siedem belek o przekroju 160 x 200 mm, długości 1300 mm, wykonanych z betonu klasy C35/45 z kruszywem żwirowym (krzemianowym). Średnia wytrzymałość betonu na ściskanie oznaczona na próbkach sześciennych o boku 150 mm wynosiła odpowiednio 46,3 MPa - po 28 dniach od zabetonowania oraz 60,8 MPa - po około 4 miesiącach (przed przystąpieniem do badań). Średnia granica plastyczności stali określona eksperymentalnie wynosiła 560 MPa.
Czasopismo
Rocznik
Tom
Strony
247--264
Opis fizyczny
Bibliogr. 33 poz., il., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
- 1. R. Kowalski, “Load bearing capacity calculation of bent RC elements in fire”, Publishing House of The Warsaw University of Technology, Poland, 2008 (in Polish).
- 2. R. Kowalski, “Calculations of reinforced concrete structures fire resistance”, Architecture Civil Engineering Environment. Journal of the Silesian University of Technology 2(4): 61-69, 2009.
- 3. R. Kowalski, M. Głowacki, M. Abramowicz, “On The Experimental Analysis of Temperature Influence on Stiffness of Reinforced Concrete Beams”, Journal of Structural Fire Engineering 6(1): 49-57, 2015. DOI: 10.1260/2040-2317.6.1.49
- 4. R. Kowalski, M. Głowacki, M. Abramowicz, “Premature Destruction of Two-Span RC Beams Exposed to High Temperature Caused by a Redistribution of Shear Forces”, Journal of Civil Engineering and Management 23(4): 431-439, 2017. DOI: 10.3846/13923730.2016.1144645
- 5. G. M. Cooke, “Behaviour of Precast Concrete Floor Slabs Exposed to Standardised Fires”, Fire Safety Journal 36(5): 459-475, 2001. DOI: 10.1016/S0379-7112(01)00005-4
- 6. R. Kowalski, “The Use of Eurocode Model of Reinforcing Steel Behavior at High Temperature for Calculation of Bars Elongation in RC Elements Subjected to Fire”, Procedia Engineering 193: 27-34, 2017. DOI: 10.1016/j.proeng.2017.06.182
- 7. M. Abramowicz, R. Kisieliński, R. Kowalski, “Mechanical Properties of Reinforcing Bars Heated up Under Steady Stress Condition”, Proceedings of International Conference Applications of Structural Fire Engineering, pp 31-36, Prague 2011.
- 8. R. Kowalski, R. Kisieliński, “On Mechanical Properties of Reinforcing Steel in RC Beams Subjected to High Temperature”, Architecture Civil Engineering Environment, Journal of the Silesian University of Technology 4(2): 49-56, 2011.
- 9 Y. Anderberg, “Modelling Steel Behaviour”, Fire Safety Journal 13: 17-26, 1988.
- 10. EN 1992-1-2:2004. Eurocode 2: Design of concrete structures - Part 1-2: General rules – Structural fire design.
- 11. R. Kowalski, R. Kisielinski, “Experimental approach to strength reduction and elongation of self-tempered reinforcing bars tensioned at a steady and an increasing temperature”. Structural Concrete, Early View. DOI: 10.1002/suco.201800076
- 12. G. A. Khoury, C. E. Majorana, F. Pesavento, B. A. Schrefler, “Modelling of Heated Concrete”, Magazine of Concrete Research 54(2): 77-101. 2002. DOI: 10.1680/macr.54.2.77.40895
- 13. G. A. Khoury, B. N. Grainger, P. J. Sullivan, “Strain of Concrete During First Cooling from 600°C under Load”, Magazine of Concrete Research 38(134): 3-12, 1986. DOI: 10.1680/macr.1986.38.134.3
- 14. G. A. Khoury, B. N. Grainger, P. J. Sullivan, “Strain of Concrete During First Heating to 600°C under Load”, Magazine of Concrete Research 37(133): 195-215, 1985. DOI: 10.1680/macr.1985.37.133.195
- 15. G. A. Khoury, B. N. Grainger, P. J. Sullivan, “Transient Thermal Strain of Concrete: Literature Review, Conditions within Specimen and Behaviour of Individual Constituents”, Magazine of Concrete Research 37(132): 131-144, 1985. DOI: 10.1680/macr.1985.37.132.131
- 16. I. Hager, T. Tracz, “The Impact of the Amount and Length of Fibrillated Polypropylene Fibres on the Properties of HPC Exposed to High Temperature”, Archives of Civil Engineering 56(1): 57-68, 2010. DOI: 10.2478/v.10169-010-0003-z
- 17. W. Jackiewicz-Rek, T. Drzymała, A. Kuś, M. Tomaszewski, “Durability of High Performance Concrete (HPC) Subject to Fire Temperature Impact”. Archives of Civil Engineering, 62(4): 73-94, 2016. DOI: 10.1515/ace-2015-0109
- 18. fib Bulletin 38/2007, “Fire design for concrete structures – materials, structures and modelling. State-of-art report”, International Federation for Structural Concrete (fib), p. 97, 2007.
- 19. E. Jensen, J. Van Horn, J. Meenakshi, “Axial deformation of concrete exposed to fire and loading”, Proceedings, Interflam, Nottingham, UK, 2010.
- 20. C. Mindeguia, I. Hager, P. Pimienta, H. Carré, C. La Borderie, “Parametrical study of transient thermal strain of ordinary and high performance concrete”, Cement and Concrete Research 48: 40-52, 2013. DOI: 10.1016/j.cemconres.2013.02.004
- 21. P. Chudzik, R. Kowalski, M. Abramowicz, “Strains of concrete in RC structures subjected to fire”, Procedia Engineering 193: 377-384, 2017. DOI: 10.1016/j.proeng.2017.06.227
- 22. L. X. Xiong, “Uniaxial dynamic mechanical properties of tunnel lining concrete under moderate-low strain rate after high temperature”, Archives of Civil Engineering 61(2): 35-52, 2015. DOI: 10.1515/ace-2015-0013
- 23. B. Wu, G-H. Tang, “Experimental Study on Fire Behaviors of Simply-Supported T-beams and Restrained T-beams”, Proceedings of the 8th International Conference on Structures in Fire, Shanghai, China, pp 343-348, 2014.
- 24. E. G. Choi, Y. S. Shin, “The Structural Behavior and Simplified Thermal Analysis of Normal-Strength and High-Strength Concrete Beams under Fire”, Engineering Structures 33(4): 1123-1132, 2011. DOI: 10.1016/j.engstruct.2010.12.030
- 25. X. Shi, T-H. Tan, K-H. Tan, Z. Guo, “Influence of Concrete Cover on Fire Resistance of Reinforced Concrete Flexural Members”, Journal of Structural Engineering 130(8): 1225–1232, 2004. DOI: 10.1061/(ASCE)0733-9445(2004)130:8(1225)
- 26. R. Kowalski, P. Król, “Experimental Examination of Residual Load Bearing Capacity of RC Beams Heated up to High Temperature”, Sixth International Conference Structures in Fire, Michigan State University, East Lansing, Michigan, USA, Proceedings edited by V. K. R. Kodur and J. M. Fransen, DEStech Publications Inc. 54-261, 2010.
- 27. B. Ellingwood, T. Lin, “Flexure and Shear Behavior of Concrete Beams during Fires”, Journal of Structural Engineering 117(2): 440-458, 1991. DOI: 10.1061/(ASCE)0733-9445(1991)117:2(440)
- 28. Z. Guo, X. Shi, “Experiment and Calculation of Reinforced Concrete at Elevated Temperatures”, Tsinghua University Press, Published by Elsevier Inc., 2011. DOI: 10.1016/C2010-0-65988-8
- 29. J. Yu, Y. Liu, Z. Lu, K. Xiang, “Flexural Performance of Fire Damaged and Rehabilitated Two Span Reinforced Concrete Slabs and Beams”, Structural Engineering and Mechanics 12 (5), 2012. DOI: 10.12989/sem.2012.42.6.799
- 30. J. Franssen, “User’s Manual for SAFIR 2011 A Computer Program for Analysis of Structures Subjected to Fire”, University of Liege, Belgium, 2011.
- 31. EN 1991-1-2:2002. Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire
- 32. R. Kowalski, M. Abramowicz, P. Chudzik, “Reaction of R/C Slabs Cross-Sections to Fire. Calculation of Simplified Substitute Temperature Loads Induced by An Unsteady Heat Flow”, Proceedings of The International Conference of Applications of Structural Fire Engineering, pp 214-219, Dubrovnik 2015. DOI: 10.14311/asfe.2015.033
- 33. EN 1992-1-1:2004. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e072e6b-c977-4e01-891c-6e21554cfa8d