PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ion Move Brownian Dynamics (IMBD) : Simulations of Ion Transport

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Comparison of the computed characteristics and physiological measurement of ion transport through transmembrane proteins could be a useful method to assess the quality of protein structures. Simulations of ion transport should be detailed but also time-efficient. Methods: The most accurate method could be Molecular Dynamics (MD), which is very time-consuming, hence is not used for this purpose. The model which includes ion-ion interactions and reduces the simulation time by excluding water, protein and lipid molecules is Brownian Dynamics (BD). In this paper a new computer program for BD simulation of the ion transport is presented. We evaluate two methods for calculating the pore accessibility (round and irregular shape) and two representations of ion sizes (van der Waals diameter and one voxel). Results: Ion Move Brownian Dynamics (IMBD) was tested with two nanopores: alpha-hemolysin and potassium channel KcsA. In both cases during the simulation an ion passed through the pore in less than 32 ns. Although two types of ions were in solution (potassium and chloride), only ions which agreed with the selectivity properties of the channels passed through the pores. Conclusions: IMBD is a new tool for the ion transport modelling, which can be used in the simulations of wide and narrow pores.
Rocznik
Strony
107--115
Opis fizyczny
Bibliogr. 32 poz., tab., wykr.
Twórcy
  • Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wroclaw, Poland
autor
  • Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wroclaw, Poland
Bibliografia
  • [1] KOZMA D., SIMON I., TUSNÁDY G.E., PDBTM: Protein Data Bank of transmembrane proteins after 8 years, Nucleic Acids Res., 2013,Vol. 41(Database issue), D275–D278.
  • [2] BERMAN H.M., WESTBROOK J., FENG Z., GILLILAND G., BHAT T.N., WEISSIG H., SHINDYALOV I.N., BOURNE P.E., The Protein Data Bank, Nucleic Acids Res., 2000, 28(1), 235–242.
  • [3] KROGH A., LARSSON B., VON HEIJNE G., SONNHAMMER E.L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes, J. Mol. Biol., 2001, 305(3), 567–580.
  • [4] BARTH P., WALLNER B., BAKER D., Prediction of membrane protein structures with complex topologies using limited constraints, Proc. Natl. Acad. Sci. U.S.A., 2009, 106(5), 1409– 1414.
  • [5] YU B., ZHANG Y., A simple method for predicting transmembrane proteins based on wavelet transform, Int. J. Biol. Sci., 2013, 9(1), 22–33.
  • [6] ASHCROFT F.M., From molecule to malady, Nature, 2006, 440(7083), 440–447.
  • [7] JAFRI M.S., KOTULSKA M., Modeling the mechanism of metabolic oscillations in ischemic cardiac myocytes, J. Theor. Biol., 2006, 242(4), 801–817.
  • [8] KOTA P., DING F., RAMACHANDRAN S., DOKHOLYAN N.V., Gaia: automated quality assessment of protein structure models, Bioinformatics, 2011, 27(16), 2209–2215.
  • [9] RATH E.M., TESSIER D., CAMPBELL A.A., LEE H.C., WERNER T., SALAM N.K., LEE L.K., CHURCH W.B., A benchmark server using high resolution protein structure data, and benchmark results for membrane helix predictions, BMC Bioinformatics, 2013, 14, 111.
  • [10] KONOPKA B.M., NEBEL J.C., KOTULSKA M., Quality assessment of protein model-structures based on structural and functional similarities, BMC Bioinformatics, 2012, 13, 242.
  • [11] DYRKA W., BARTUZEL M.M., KOTULSKA M., Optimization of 3D Poisson-Nernst-Planck model for fast evaluation of diverse protein channels, Proteins, 2013, 81(10), 1802–1822.
  • [12] KUYUCAK S., ANDERSEN O.S., CHUNG S-H., Models of permeation in ion channels, Rep. Prog. Phys., 2001, 64(11), 1427−1472.
  • [13] NOSKOV S.Y., IM W., ROUX B., Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory, Biophys. J., 2004, 87(4), 2299–2309.
  • [14] COZMUTA I., O’KEEFFE J.T., BOSE D., STOLC V., Hybrid MDNernst Planck model of α-hemolysin conductance properties, Mol, Simul,, 2005, 31, 79–93.
  • [15] DYRKA W., AUGOUSTI A.T., KOTULSKA M., Ion Flux Through Membrane Channels – An Enhanced Algorithm for the Poisson-Nernst-Planck Model, J. Comput. Chem., 2008, 29(12), 1876–1888.
  • [16] SCHIRMER T., PHALE P.S., Brownian dynamics simulation of ion flow through porin.
  • [17] CHUNG S.H., ALLEN T.W., KUYUCAK S., Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations, Biophys. J., 2002, 82(2), 628–645.
  • [18] KRISHNAMURTHY V., CHUNG S.H, Adaptive Brownian dynamics simulation for estimating potential mean force in ion channel permeation, IEEE Trans. Nanobioscience, 2006, 5(2), 126–38.
  • [19] LEE K.I., JO S., RUI H., EGWOLF B., ROUX B., PASTOR R.W., IM W., Web interface for Brownian dynamics simulation of ion transport and its applications to beta-barrelpores, J. Comput. Chem., 2012, 33(3), 331–339.
  • [20] KRAMMER E.M., HOMBLE F., PREVOST M., Structure et Fonction des Membranes Biologiques, Biochim. Biophys. Acta., 2013, 1828(4), 1284–1292.
  • [21] DE BIASE P.M., SOLANO C.J., MARKOSYAN S., CZAPLA L., NOSKOV S.Y., BROMOC-D: Brownian Dynamics/MonteCarlo Program Suite to Study Ion and DNA Permeation in Nanopores, J. Chem. Theory Comput., 2012, 8(7), 2540– 2551.
  • [22] GABDOULLINE R.R., WADE R.C., Brownian Dynamics Simulation of Protein-Protein Encounter, Methods, 1998, 3, 329–341.
  • [23] MADURA J.D., BRIGGS J.M., WADE R.C., DAVIS M.E., LUTY B.A., ILIN A., ANTOSIEWICZ J., GILSON M.K., BAGHERI B., SCOTT L.R, MCCAMMON J.A., Electrostatic and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics Program, Comput. Phys. Commun., 1995, 91, 57–9.
  • [24] DŁUGOSZ M., ZIELIŃSKI P., TRYLSKA J., Brownian dynamics simulations on CPU and GPU with BD_BOX, J. Comput. Chem., 2011, 32, 2734–2744.
  • [25] CHUNG S.-H., KUYUCAK S., Ion channels: recent progress and prospects, Eur. Biophys. J., 2002, 31(4), 283−293.
  • [26] LOMIZE M.A., LOMIZE A.L., POGOZHEVA I.D., MOSBERG H.I., OPM: Orientations of Proteins in Membranes database, Bioinformatics, 2006, 22(5), 623−625.
  • [27] DOLINSKY T.J., CZODROWSKI P., LI H., NIELSEN J.E., JENSEN J.H., KLEBE G., BAKER N.A., PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations, Nucleic Acids Res., 2007, 35 (Web Server issue), W522−W525.
  • [28] BAKER N.A., SEPT D., JOSEPH S., HOLST M.J., MCCAMMON J.A., Electrostatics of nanosystems: application to microtubules and the ribosome, Proc. Natl. Acad. Sci. U.S.A., 2001, 98(18), 10037−10041.
  • [29] NOSKOV S.Y., WONPIL I., ROUX B., Ion Permeation through the α-Hemolysin Channel: Theoretical Studies Based on Brownian Dynamics and Poissom-Nerst-Plank Electrodiffusion Theory, Biophys. J., 2004, 87(4), 2299−2309.
  • [30] SONG L., HOBAUGH M.R., SHUSTAK C., CHELEY S., BAYLEY H., GOUAUX J.E., Structure of staphylococcal alphahemolysin, a heptameric transmembrane pore, Science, 1996, 274(5294), 1859−1866.
  • [31] DOYLE D.A., MORAIS-CABRAL J., PFUETZNER R.A., KUO A., GULBIS J.M., COHEN S.L., CHAIT B.T., MACKINNON R., The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science, 1998, 280(5360), 69−77.
  • [32] AKSIMENTIEV A., SCHULTEN K., Imaging alpha-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability and the electrostatic potential map, Biophys. J., 2005, 88, 3745–3761.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e019e7b-8f08-4d1c-9d6e-0d8da5dc9214
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.