Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
CESD 2024 : Conference on Earth Sciences : November 11th, 2024, Ho Chi Minh City, Vietnam
Języki publikacji
Abstrakty
Measurement of the defects (cracks) of clay mixing sodium chloride ‘NaCl’ with consideration of the temperature variations were measured carefully by the experiment method in the laboratory. Sodium Chloride ‘NaCl’ concentration varied in range 9.86 - 60.56% according to the temperature range 20 - 2000C. The research results present clear defects (cracks) that appear much more on the body sample with a large length, width, and depth according to the different temperature variations. Moreover, the Image J software was used to analyze, calculate, and draw the defect’s shape. In addition, the Unconfined Compression Test (UCT) described the close relationship between the stress and strain, the displacement and loads of the clay mixing sodium chloride ‘NaCl’ concentration, loading, and temperature. The maximum load is compared with the lower loading and the lower clay’s resistance. Finally, these research results are good documents that contributed to the development of design, survey, and construction in geology and civil engineering to research clay near the coastal areas where clay soils are often affected by saltwater intrusion.
Czasopismo
Rocznik
Tom
Strony
art. no. 17
Opis fizyczny
Bibliogr. 45 poz., tab., wykr., zdj.
Twórcy
autor
- University of Science, Ho Chi Minh City, Vietnam, 227 Nguyen Van Cu, Cho Quan Ward, Ho Chi Minh City, Vietnam
- Kien Giang University, Vietnam, 320A- 61 Highway, Vinh Hoa Hiep, Chau Thanh District, An Giang Province, Vietnam
autor
- University of Science, Ho Chi Minh City, Vietnam, 227 Nguyen Van Cu, Cho Quan Ward, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam, Dong Hoa Ward, Ho Chi Minh City, Vietnam
autor
- University of Technology, Ho Chi Minh City, Vietnam, 268 Ly Thuong Kiet, Dien Hong Ward, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam, Dong Hoa Ward, Ho Chi Minh City, Vietnam
Bibliografia
- 1. Acosta L N P, Santiago EA L, Núñez P V M, Ossa A, Mendoza M J, Shelley O E, Botero E, 2019, Performance of a test embankment on very soft clayey soil improved with rain-to-drain vacuum preloading-technology, Geotextiles and Geo-membranes, 47, 1-14. https://doi.org/10.1016/j.geotexmem.2019.103459.
- 2. Alizadeh Akram and Dargahi Khatoon (2024), Mechanism of Ivughli salt dome exhumation, northwestern Iran, Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2024.2373494.
- 3. Bo-wei Zhang, Ze-qun Zhang, Qi-juan Dong, Jun-sheng Wu, Ning Zhuang, Pengcheng Zuo, Xiao-gang Li, 2024, Electrochemical corrosion behavior of nanostructured BCCAl0.5CoCrFeNi0.4 high-entropy alloy in sodium chloride solution, Trans. Nonferrous Met. Soc. China 34, 1908-1921. http://10.1016/S1003-6326(24)66515-5.
- 4. Chai J, Miura N, Bergado D T, 2007, Preloading clayey deposit by vacuum pressure with cap - drain: Analyses versus performance, Geotextiles and Geo-membranes, 26, 1001-1004. https://doi.org/10.1016/j.geotexmem.2007.10.004
- 5. Chai J, Hong Z, Shen S, 2010, Vacuum- drain consolidation induced pressure distribution and ground deformation, Geotextiles and Geo-membranes, 28, 525-535. https://doi.org/10.1016/j.geotexmem.2010.01.003.
- 6. Cai Y, Qiao H, Wang J, Geng X, Wang P, Cai Y, 2017, Experimental tests on effect of deformed prefabricated vertical drains in dredged soil on consolidation via vacuum preloading, Engineering Geology, 222, 10-19. https://doi.org/10.1016/j.enggeo.2017.03.020.
- 7. Colpo Angélica, Sabrina Vantadori, Leandro Friedrich, Andrea Zanichelli, Camilla Ronchei, Daniela Scorza, Ignacio Iturrioz, 2022, Crack path estimation in the shot-earth 772 by a discrete element method, Procedia Structural Integrity 41 260–265, https://:10.1016/j.prostr.2022.05.030.
- 8. Chu J, Yan S W, 2005, Application of the Vacuum Preloading Method in Soil Improvement Projects, Elsevier Geo-engineering book series, chapter 3, volume 3, 91-117. https://doi.org/10.1016/S1571-9960(05)80006-0.
- 9. Greve A, M.S. Andersen, R.I. Acworth, 2010. Investigations of soil cracking and preferential flow in a weighing lysimeter filled with cracking clay soil, Journal of Hydrology, 393, 105–113, https://doi:10.1016/j.jhydrol.2010.03.007
- 10. Chuanxin Hou, Fushan Li, Hideo Kimura, Qiuyu Li, Liyuan Liu, Qiqi Chu, Jinmiao Wu, Guohua Fan, Wei Du, 2023, Sodium chloride assisted synthesis of porous magnetic carbon nanocomposites containing cobalt nanoparticles for high-performance electromagnetic wave-absorption, journal of materials research and technology, 2 5, 5148 e 5158. https://doi.org/10.1016/j.jmrt.2023.07.010.
- 11. Indraratna B, Kan E M, Potts D, Rujikiatkamjorn C, Sloan W S, 2016, Analytical solution and numerical simulation of vacuum consolidation by vertical drains beneath circular embankments, Computers and Geo-technics, 80, 83-96. https://doi.org/10.1016/j.compgeo.2016.06.008.
- 12. Indraratna B, Rujikiatkamjorn C, Balasubramaniam A S, Wijeyakulasuriya V, 2005, Predictions and Observations of Soft Clay Foundations Stabilized with Geo-Synthetic Drains and Vacuum Surcharge, Elsevier Geo-Engineering book series, chapter 7, volume 3, 199-229. https://doi.org/10.1016/S1571-9960(05)80010-2.
- 13. Indraratna B, Rujikiatkamjorn C, Balasubramaniam A S, Wijeyakulasuriya V, 2015, Predictions and Observations of Soft Clay Foundations Stabilized with Geo-Synthetic Drains and Vacuum Surcharge, 4nd Edition, Canada. https://doi.org/10.1016/S1571-9960(05)80010-2.
- 14. Indraratna B, Rujikiatkamjorn C, Baral P, Ameratunga J, 2018, Performance of marine clay stabilized with vacuum pressure: Based on Queensland experience, Journal of Rock Mechanics and Geotechnical Engineering, 2, 1-14. https://doi.org/10.1016/j.jrmge.2018.11.002.
- 15. Long P V, Nguyen L V, Bergado D T, Balasubramaniam A S, 2015, Performance of PVD improved soft ground using vacuum consolidation methods with and without airtight membrane, Geotextiles and Geo-membranes, 47, 1-11. https://doi.org/10.1016/j.geotexmem.2015.05.007.
- 16. Bo Liu, Cheng Zhu, Chao-Sheng Tang, Yue-Han Xie, Li-Yang Yin, Qing Cheng, Bin Shi, 2020. Bio-remediation of desiccation cracking in clayey soils through microbial induced calcite precipitation (MICP), Engineering Geology, 264, 105-389, https://doi.org/10.1016/j.enggeo.2019.105389.
- 17. Moh C Z, Lin P, 2005, Case Study of Ground Improvement Work at the Suvarnabhumi Airport of Thailand, Elsevier Geo-Engineering book series, chapter 3, volume 3, 159-198. https://doi.org/10.1016/B978-0-08-100192-9.00006-5.
- 18. Marques M E S, Leroueil S, 2005, Pre-consolidating Clay Deposit by Vacuum and Heating in Cold Environment, Elsevier Geo-Engineering book series, chapter 36, volume 3, 1045-1063. https://doi.org/10.1016/S1571-9960(05)80039-4.
- 19. Carol J. Miller, P.E., M.ASCE, and Sami Rifai, P.E, 2004, Fiber Reinforcement for Waste Containment Soil Liners, J. Environ. Eng, 130 (8): 891-895, https://doi: 10.1061/~ASCE0733-9372~2004-130:8~891.
- 20. Nguyen S H, Tashiro M, Inagaki M, Yamada S, Noda T, 2015, Simulation and evaluation of improvement effects by vertical drains/vacuum consolidation on peat ground under embankment loading based on a macro-element method with water absorption and discharge functions, Soils and Foundations, 55(5), 1044-1057. https://doi.org/10.1016/j.sandf.2015.09.007.
- 21. Ni P, Xu K, Mei G, Zhao Y, 2018, Effect of vacuum removal on consolidation settlement under a combined vacuum and surcharge preloading, Geotextiles and Geo-membranes, 47, 12-22. https://doi.org/10.1016/j.geotexmem.2018.09.004.
- 22. Neyamadpour A, 2018, Detection of subsurface cracking depth using electrical resistivity tomography: A case study in Masjed - Soleiman, Iran, Construction and Building Materials 191, 1103–1108, https://doi.org/10.1016/j.conbuildmat.2018.10.027.
- 23. Namdar A, 2022, Impact of soil crack on embankment seismic resistance, Procedia Structural Integrity, 39 47–56, https://doi//10.1016/j.prostr.2022.03.071.
- 24. Qian H, Zhao W B, Cheung Y K, Lee P K K, 1992, The theory and practice of vacuum preloading, Computers and Geo-technics, 13(2), 103-118. https://doi.org/10.1016/0266-352X(92)90027-Q.
- 25. Rashmisikha B and M.R.das, 2022, An experimental study on evaluation of fiber Reinforced-Fly ash stabilized black cotton soil as a sustainable subgrade material, Materials Today: Proceedings 62, 6182–6188, https://doi.org/10.1016/j.matpr.2022.05.044.
- 26. Songyu L, Dingwen Z, Guangyin D, Wenjun H, 2016, A New Combined Vacuum Preloading with Pneumatic Fracturing Method for Soft Ground Improvement, In proceeding of 3th International Conference on Transportation Geo-Technics (ICTG 2016), Nanjing, China. https://doi.org/10.1016/j.proeng.2016.06.057.
- 27. Song S Y, Kim T H, 2004, Improvement of estuarine marine clays for coastal reclamation using vacuum - applied consolidation method, In proceeding of 31th Ocean Engineering, South Korea, 1999-2010. https://doi.org/10.1016/J.OCEANENG.2004.05.004.
- 28. Saowapakpiboon J, Bergado D T, Voottipruex P, Lam L G, Nakakuma K, 2010, PVD improvement combined with surcharge and vacuum preloading including simulations, Geotextiles and Geomembranes, 29, 74-82. https://doi.org/10.1016/j.geotexmem.2010.06.008.
- 29. Shibata T, Murakami A, Fujii M, 2014, Prediction of embankment behavior of regulating reservoir with foundation improved by vacuum consolidation method, Soils and Foundations, 54(5), 938-954. https://doi.org/10.1016/j.sandf.2014.09.008.
- 30. Chaosheng Tang, Bin Shi, Chun Liu, Lizheng Zhao, Baojun Wang, 2008. Influencing factors of the geometrical structure of surface shrinkage cracks in clayey soils, Engineering Geology, 101, 204–217, http://doi:10.1016/j.enggeo.2008.05.005.
- 31. Chao-Sheng Tang, De-Yin Wang, Cheng Zhu, Qi-You Zhou, Shi-Kang Xu, Bin Shi, 2018, Characterizing drying-induced clayey soil desiccation cracking process using electrical resistivity method, Applied Clay Science, 152 (2018), 101–112, https://doi.org/10.1016/j.clay.2017.11.001.
- 32. Ben-Gang Tian, Qing Cheng, Chao-Sheng Tang, Hao Zeng, Jin-jian Xu, Bin Shi, 2022. Effects of compaction state on desiccation cracking behavior of a clayey soil subjected to wetting-drying cycles, Engineering Geology, 302 106-650, https://doi.org/10.1016/j.enggeo.2022.106650.
- 33. Teerachaikulpanich N, Kosaka T, 2015, High Pressure for Vacuum Consolidation Method Using Air-Water Separation System, 3nd Edition, Japan. https://doi.org/10.1016/B978-0-08-100192-9.00010-7.
- 34. Thy T. Doan, 2022. Evaluation of the vertical displacement of the circular foundation on the overconsolidation ground in Phu Quoc Island, Kien Giang province, Viet Nam. Proceedings of the 6th International Conference on Civil Engineering for Sustainable Development (ICCESD 2022), 10~12 February 2022, KUET, Khulna, Bangladesh (ISBN-978-984-35-1972-6). http://103.157.135.50/proc_2022/Papers/GTE-01125.pdf.
- 35. Thy T. Doana, 2024. Experiment measurement of the cracks by the Sodium Chloride concentration and temperature changes, J. Materialstoday: Proceddings. https://doi.org/10.1016/j.matpr.2024.02.024.
- 36. Thy T. Doanb , 2024. Comparison between numerical analysis and experiment for the dry density and shear resistance variations with different depths (groundwater level variations). J. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2023.2254011.
- 37. Wang Ce, Zhan-yu Zhang, Yang Liu, Shi-min Fan, 2017. Geometric and fractal analysis of dynamic cracking patterns subjected to wetting-drying cycles, Soil & Tillage Research, 170 1–13, http://dx.doi.org/10.1016/j.still.2017.02.005.
- 38. Wang Ce, Zhan-yu Zhang, Shi-min Fan, Richwell Mwiya, Mei-xiang Xie, 2018. Effects of straw incorporation on desiccation cracking patterns and horizontal flow in cracked clay loam, Soil & Tillage Research, 182, 130–143, https://doi.org/10.1016/j.still.2018.04.006.
- 39. Wang J, Ma J, Liu F, Mi W, Cai Y, Fu H, Wang P, 2016, Experimental study on the improvement of marine clay slurry by electro-osmosis-vacuum preloading, Geotextiles and Geo-membranes, 44, 615-622. https://doi.org/10.1016/j.geotexmem.2016.03.004.
- 40. Xu H B, He N, Jiang B Y, Zhou Z Y, Zhan J X, 2020, Experimental study on the clogging effect of dredged fill surrounding the PVD under vacuum preloading, Geotextiles and Geo-membranes, 188, 121-125. https://doi.org/10.1016/j.geotexmem.2020.03.007.
- 41. Zhang Z, Ye B G, Xu Y, 2017, Comparative analysis on the performance of vertical drain improved clay deposit under vacuum or surcharge loading, Geotextiles and Geo-membranes, 46, 146-154. https://doi.org/10.1016/j.geotexmem.2020.03.007.
- 42. Zhang L, Hu L, 2018, Laboratory tests of electro-osmotic consolidation combined with vacuum preloading on kaolinite using electro-kinetic geo-synthetics, Geotextiles and Geo-membranes, 47, 166-176. https://doi.org/10.1016/j.sandf.2018.12.015.
- 43. Zhu W, Yan J, Yu G, 2018, Vacuum preloading method for land reclamation using hydraulic filled slurry from the sea: A case study in coastal China, Ocean Engineering, 152, 286-299. https://doi.org/10.1016/j.oceaneng.2018.01.063.
- 44. Ulén Barbro, Gunborg Alex, Jenny Kreuger, Annika Svanbäck & Ararso Etana, 2012, Particulatefacilitated leaching of glyphosate and phosphorus from a marine clay soil via tile drains, Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 62:sup2, 241-251. https://doi.org/10.1080/09064710.2012.697572.
- 45. Laptop 3 Mien company, Image J software, 2024. https://laptop3mien.vn/tai-imagej-2024-linkgoogle-da-test-100-va-huong-dan-cai-dat-full/
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5df9bff2-da4f-478a-a39f-cdfca3481984
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.