PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ammonia level sensor using tapered optical fiber coated with titanium dioxide-incorporated porphyrin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since ammonia is water-soluble, environmental studies have shown that the industrial waste such as fertilizer manufacturing, food products, palm oil, urea fertilizer industry can cause very serious damage to water body ecosystems if not properly managed, resulting in a decrease in water quality. Devices based on optical technology, especially devices that combine optical fibers and nanomaterials, are identified as highly sensitive to the species of interest by detecting changes in physicochemical properties. A practical, easy-to-use, inexpensive instrument for detecting ammonia level was proposed using tapered optical fiber (TOF) coated with titanium dioxide-incorporated porphyrin. TOF was fabricated by simultaneously stretching and heating. The preparation of TiO2/porphyrin/gelatine was prepared to coat tapered optical fiber by dipping. SEM analysis shows an increase in length and a decrease in diameter, also the successful coating of titanium dioxide and porphyrin in the taper region. The EDX analysis also proves the presence of the Ti element in the TOF layer. The TOF produces significant sensing performances toward the ammonia liquid concentration level. The TOF coated with titanium dioxide-incorporated porphyrin can detect a one ppm difference in ammonia concentration with a certain range of output voltage for every concentration has.
Czasopismo
Rocznik
Strony
353--361
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Department of Physics, Faculty of Science and Technology, University of Airlangga, Surabaya (60115), Indonesia
  • Department of Physics, Faculty of Science and Technology, University of Airlangga, Surabaya (60115), Indonesia
  • Department of Physics, Faculty of Science and Technology, University of Airlangga, Surabaya (60115), Indonesia
autor
  • Department of Physics, Faculty of Science and Technology, University of Airlangga, Surabaya (60115), Indonesia
Bibliografia
  • [1] TIWARI D., MULLANEY K., KORPOSH S., JAMES S.W., LEE S.W., TATAM R.P., An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide, Sensors and Actuators B: Chemical 242, 2017: 645-652. https://doi.org/10.1016/J.SNB.2016.11.092
  • [2] TIMMER B., OLTHUIS W., VAN DEN BERG A., Ammonia sensors and their applications—a review, Sensors and Actuators B: Chemical 107(2), 2005: 666-677. https://doi.org/10.1016/J.SNB.2004.11.054
  • [3] APRIYANTI D., SANTI V.I., SIREGAR Y.D., Method assessment for ammonia analysis in water using salicylate test kit, Ecolab 7(2), 2013: 60-70. https://doi.org/10.20886/jklh.2013.7.2.60-70
  • [4] HIDAYAHTULLAH F.S., HERMAWAN A., GOFAR N., Microalgae potential to decreasing dissolved ammonia concentration (NH3 ) on liquid waste of urea fertilizer factory, TECHNO: Jurnal Penelitian 8(1), 2019: 224-232. https://doi.org/10.33387/TK.V8I1.977
  • [5] KROHN D.A., MACDOUGALL T.W., MENDEZ A., Fiber Optic Sensors: Fundamentals and Applications, Fourth Ed., SPIE, 2015. https://doi.org/10.1117/3.1002910
  • [6] LEE B., ROH S., PARK J., Current status of micro- and nano-structured optical fiber sensors, Optical Fiber Technology 15(3), 2009: 209-221. https://doi.org/10.1016/j.yofte.2009.02.006
  • [7] LACKNER M., Tunable diode laser absorption spectroscopy (TDLAS) in the process industries – A review, Reviews in Chemical Engineering 23(2), 2007: 65-147. https://doi.org/10.1515/REVCE.2007.23.2.65
  • [8] KORPOSH S., JAMES S.W., LEE S.W., TATAM R.P., Tapered optical fibre sensors: current trends and future perspectives, Sensors 19(10), 2019: 2294. https://doi.org/10.3390/S19102294
  • [9] CALLISTER W.D., Materials Science and Engineering an Introduction, John Wiley & Sons, 2003.
  • [10] ZIBAII M.I., KAZEMI A., LATIFI H., AZAR M.K., HOSSEINI S.M., GHEZELAIAGH M.H., Measuring bacterial growth by refractive index tapered fiber optic biosensor, Journal of Photochemistry and Photobiology B: Biology 101(3), 2010: 313-320. https://doi.org/10.1016/j.jphotobiol.2010.07.017
  • [11] CHU C.S., LO Y.L., SUNG T.W., Review on recent developments of fluorescent oxygen and carbon dioxide optical fiber sensors, Photonic Sensors 1(3), 2011: 234-250. https://doi.org/10.1007/S13320-011-0025-4
  • [12] CASTILLERO P., SÁNCHEZ-VALENCIA J.R., CANO M., PEDROSA J.M., ROALES J., BARRANCO A., GONZÁLEZ-ELIPE A.R., Active and optically transparent tetracationic porphyrin/TiO2 composite thin films, ACS Applied Materials & Interfaces 2(3), 2010: 712-721. https://doi.org/10.1021/am900746q
  • [13] CASTILLERO P., ROALES J., LOPES-COSTA T., SÁNCHEZ-VALENCIA J.R., BARRANCO A., GONZÁLEZ-ELIPE A.R., PEDROSA J.M., Optical gas sensing of ammonia and amines based on protonated porphyrin/TiO2 composite thin films, Sensors 17(1), 2017: 24. https://doi.org/10.3390/S17010024
  • [14] YASIN M., IRAWATI N., ISA N.M., HARUN S.W., AHMAD F., Graphene coated silica microfiber for highly sensitive magnesium sensor, Sensors and Actuators A: Physical 273, 2018: 67-71. https://doi.org/10.1016/J.SNA.2018.02.021
  • [15] LU H., TIAN Z., YU H., YANG B., JING G., LIAO G., ZHANG J., YU J., TANG J., LUO Y., CHEN Z., Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing, Optics Express 22(26), 2014: 32502-32508. https://doi.org/10.1364/OE.22.032502
  • [16] TU W., DONG Y., LEI J., JU H., Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles, Analytical Chemistry 82(20), 2010: 8711-8716. https://doi.org/10.1021/AC102070F
  • [17] MILGROM L.R., The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds, Oxford University Press, 1997. https://library.wur.nl/WebQuery/titel/941228 (accessed: April 12, 2022).
  • [18] MARINHO F., CARVALHO C.M., APOLINÁRIO F.R., PAULUCCI L., Measuring light with light-dependent resistors: an easy approach for optics experiments, European Journal of Physics 40(3), 2019: 035801. https://doi.org/10.1088/1361-6404/AB11F1
  • [19] ISHIHARA S., LABUTA J., VAN ROSSOM W., ISHIKAWA D., MINAMI K., HILL J.P., ARIGA K., Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes, Physical Chemistry Chemical Physics 16(21), 2014: 9713-9746. https://doi.org/10.1039/c3cp55431g
  • [20] PRASINTHA P., SARI D.N., RIDHO M.R., FIKROH U.Z., PUJIYANTO, TRILAKSANA H., SAMIAN, Detection of lubricating oil viscosity based on displacement sensor using fiber coupler and concave mirror, AIP Conference Proceedings 2314(1), 2020: 030010. https://doi.org/10.1063/5.0034554
  • [21] PUJIYANTO, SAMIAN, YASIN M., NA’IMAH S., TRILAKSANA H., SUPADI, The detection of cadmium ion level in distilled water using 532 nm laser light based on the optical fiber spectrometry, AIP Conference Proceedings 2314(1), 2020: 030007. https://doi.org/10.1063/5.0034080
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5df83d19-0420-40f0-b427-cbdccf82073e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.