PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling combustion of the gas from oxygen underground coal gasification in the jet stirred reactor

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents modeling results of gas composition with CO/H2/CH4/CO2/O2/H2O/N2 as well as methane combustion, in the temperature range 1100 ÷ 1600 K and at air to fuel ratio 1.35. The substrata composition simulated the gas from oxygen Underground Coal Gasification (UCG). The jet stirred reactor (JSR) was used to kinetic investigations. The GRI 3.0 reaction mechanisms of methane combustion were tested. The CHEMKIN-CFD was used to the numerical tests. The results confirmed earlier observation that the components of gaseous fuels influence the temperature in the reaction zone. Despite of hydrogen presence in the investigated fuel the temperature decreased in the reaction zone by 70 K. It could be explained by the impact of water vapour and carbon dioxide.
Słowa kluczowe
Rocznik
Strony
97--108
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Central Mining Institute, Gwarków Square 1, 40-166 Katowice, Poland
autor
  • Central Mining Institute, Gwarków Square 1, 40-166 Katowice, Poland
Bibliografia
  • 1. Stańczyk K., Czyste technologie użytkowania węgla, Wydawnictwo Główny Instytut Górnictwa, Katowice, (2008)
  • 2. Blinderman M.S., Jones R.M., Underground Coal Gasification and Power Generation; Coal New Horizon, Gasification Technologies Conference, San Francisco, USA, October 27-30, 2002
  • 3. Olness D., The Angrenskaya Underground Coal Gasification Station, Lawrence Livermore National Laboratory, 17 June 1982. UCRL-53300
  • 4. Gil I., The analysis of combustion gas mechanism of a composition similar to the composition of the gas from underground coal gasification process – literature review, Mining and Environment, 3, (2011), pp. 25-35
  • 5. Miller J.A., Bowman C.T., Mechanism and modeling of nitrogen chemistry in combustion, Progress in Energy and Combustion Science, 15, (1989), pp. 287-338
  • 6. Westbrook Ch.K., Dryer F.L., Chemical kinetic modeling of hydrocarbon combustion, Progress in Energy and Combustion Science, 10, (1984), pp. 1-57
  • 7. Dryer F.L., Glassman I., High-temperature oxidation of CO and CH4, Fourteenth Symposium (International) on Combustion, The Combustion Institute, 14, (1973), pp. 987-1003
  • 8. Smith G.P., Golden D.M., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., Bowman C.T., Hanson R.K., Soonho Song, Gardiner W.C., Jr.,. Lissianski V.V, Zhiwei Qin, http://www.me.berkeley.edu/gri_mech/
  • 9. Konnov A.A., Development and validation of a detailed reaction mechanism for the combustion of small hydrocarbons, 28-th Symposium (Int.) on Combustion, Edinburgh (2000) Abstract Symposium Paper, p. 317
  • 10. Le Cong T., Dagaut P., Experimental and detailed kinetic modeling of the oxidation of methane/ syngas mixtures and effect of carbon dioxide addition, Combustion Science and Technology, 180, (2008), pp. 2046-2091
  • 11. http://www-mae.ucsd.edu/~combustion/cermech/ 2005
  • 12. Dagaut P., Cathonnet M., Rouan J.P., Foulatier R., Quilgars A., Boettner J.C., Gaillard F., James H., A jet-stirred reactor for kinetic studies of homogeneous gas-phase reactions at pressures up to ten atmosphere (~1 MPa), Journal of Physics E: Scientific Instruments, 19, (1986), pp. 207-209
  • 13. Stańczyk K., Howaniec N., Smoliński A., Świądrowski J., Kapusta K., Wiatowski M., Grabowski J., Rogut J., Gasification of lignite and hard coal with air and oxygen enriched air in a pilot scale ex situ reactor for underground gasification, Fuel, 90, (2011), pp. 1953-1962
  • 14. Stańczyk K., Kapusta. K., Wiatowski M., Świądrowski J., Smoliński A., Rogut J., Kotyrba A., Experimental simulation of hard coal underground gasification for hydrogen production, Fuel, 91, (2012), pp. 40-50
  • 15. Le Cong T., Dagaut P., Kinetic of natural gas, natural gas/ syngas mixtures oxidation and effect of burnt gas recirculation: experimental and detailed modeling, Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea an Air, GT2007-27146, Montreal, Canada, May 14-17, (2007), pp. 1-9
  • 16. Le Cong T., Dagaut P., Dayma G., Oxidation of natural gas, natural gas/ syngas mixtures, and effect of burnt gas recirculation experimental and detailed kinetic modeling, The Journal of Engineering Gas Turbines and Power, 130, (2008), pp. 041502-041502-10
  • 17. Le Cong T., Dagaut P., Oxidation of H2/CO2 mixtures and effect of hydrogen initial concentration on the combustion of CH4 and CH4/CO2 mixtures: Experimental and modeling, Proceedings of the Combustion Institute, 32, (2009), pp. 427-435
  • 18. Gil I., Mocek P., CFD modeling of a jet stirred reactor with recirculation for kinetic studies of homogeneous gas-phase reactions, Chemical and Process Engineering, 33, No. 3, (2012), pp. 397-410
  • 19. Tomeczek J., Termodynamika, Wydawnictwo Politechniki Śląskiej. Gliwice 1999
  • 20. Mocek P., Numercial model of the prototyp cap of ferro-silicon furnace, Hutnik – Wiadomości hutnicze, 11, (2011), pp. 940-944
  • 21. Sazhin S.S., Sazhina E.M., Faltzi-Saravelou O., Wild P., The P-1 model for thermal radiation transfer: advantages and limitations, Fuel, 75, (1996), pp. 289-294
  • 22. Siegel R., Howell R., Thermal Radiation Heat Transfer, Hemisphere Publishing Corporation, Washington DC, (1992)
  • 23. Mocek P., Gil S., Bialik W., Numerical simulation of the process of reduction gases after burning in the anode furnace. Rudy i Metale Nieżelazne, 6, (2011), pp. 323-328
  • 24. Le Cong T., Dagaut P., Experimental and detailed kinetic modeling of the oxidation of methane and methane/sygnas mixtures and effect of carbon dioxide addition, Combustion Science and Technology, 180, (2008), pp. 2046-2091
  • 25. Gil I., Investigation of gaseous hydrocarbon combustion mechanism in air diluted by combustion products in the high temperature furnace, PhD thesis, Silesian University of Technology, Katowice (2010)
  • 26. Coppens F.H.V., Konnov A.A., The effect of enrichment by H2 on propagation speeds in adiabatic flat and cellular premixed flames of CH4+O2+CO2, Fuel, 87, (2008), pp. 2866-2870
  • 27. Miller R., Zjawiska katalityczne w procesie utleniania węglowodorów w strefie popłomiennej. PhD thesis. Wrocław Univeristy of Technology, Wrocław (1989)
  • 28. Le Cong T., Dagaut P., Experimental and detailed modeling study of the effect of water vapor on the kinetics of combustion of hydrogen and natural gas, impact on NOx, Energy and Fuel, 23, (2009), pp. 725-734
  • 29. Mitani T., Ignition problems in scramjet testing, Combustion and Flame, 101, (1995), pp. 347-359. 43
  • 30. Wang B.L., Olivier H., Grőnig H.B., Ignition of shock-heated H2-air-steam mixtures, Combustion and Flame, 133, 2003, pp. 93-106
  • 31. Subramanian G., Pires da Cruz A., Bounaceur R., Vervisch L., Chemical impact of CO and H2 addition on the auto+ignition delay of homogeneous n+heptane- air mixtures, Combustion Science and Technology, 179, (2007), pp. 1937-1962.
  • 32. Anderlohr J.M., Piperel A, Pires da Cruz A, Bounaceur R., Battin-Leclerc F., Dagaut P., Montagne X.: Influence of EGR compounds on the oxidation of an HCCI-diesel surrogate, Proceedings of the Combustion Institute, 32, (2009), pp. 2851-2859
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5df73d82-3acf-4ec9-a2d6-609d26223888
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.