PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultrasound Transmission Tomography Imaging of Structure of Breast Elastography Phantom Compared to US, CT and MRI

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an analysis of the results of ultrasound transmission tomography (UTT) imaging of the internal structure of a breast elastography phantom used for biopsy training, and compares them with the results of CT, MRI and, conventional US imaging; the results of the phantom examination were the basis for the analysis of UTT method resolution. The obtained UTT, CT and MRI images of the CIRS Model 059 breast phantom structure show comparable (in the context of size and location) heterogeneities inside it. The UTT image of distribution of the ultrasound velocity clearly demonstrates continuous changes of density. The UTT image of derivative of attenuation coefficient in relation to frequency is better for visualising sharp edges, and the UTT image of the distribution of attenuation coefficient visualises continuous and stepped changes in an indirect way. The inclusions visualized by CT have sharply delineated edges but are hardly distinguishable from the phantom gel background even with increased image contrast. MRI images of the studied phantom relatively clearly show inclusions in the structure. Ultrasonography images do not show any diversification of the structure of the phantom. The obtained examination results indicate that, if the scanning process is accelerated, ultrasound transmission tomography method can be successfully used to detect and diagnose early breast malignant lesions. Ultrasonic transmission tomography imaging can be applied in medicine for diagnostic examination of women’s breasts and similarly for X-ray computed tomography, while eliminating the need to expose patients to the harmful ionising radiation.
Rocznik
Strony
321--334
Opis fizyczny
Bibliogr. 23 poz., fot., tab., wykr.
Twórcy
  • Chair of Acoustics and Multimedia, Faculty of Electronics, Wrocław University of Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Chair of Acoustics and Multimedia, Faculty of Electronics, Wrocław University of Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Chair of Acoustics and Multimedia, Faculty of Electronics, Wrocław University of Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Radiology, Wrocław Medical University Borowska 213, 50-556 Wrocław, Poland
  • Department of Radiology, Wrocław Medical University Borowska 213, 50-556 Wrocław, Poland
autor
  • Department of Radiology, Wrocław Medical University Borowska 213, 50-556 Wrocław, Poland
autor
  • Department of Radiology, Wrocław Medical University Borowska 213, 50-556 Wrocław, Poland
Bibliografia
  • 1. Basset L.W., Jackson V.P., Fu K.L., Fu Y.S. (2005), Diagnosis of Diseases of the Breast, Elsevier Saunders, Philadelphia.
  • 2. Camacho J., Medina L., Cruza J.F., Moreno J.M., Fritsch C. (2012), Multimodal Ultrasonic Imaging for Breast Cancer Detection, Archives of Acoustics, 37, 3, 253-260.
  • 3. Crawford C.R., Kak A.C. (1982), Multipath artifact corrections in ultrasonic transmission tomography, Ultrasonic Imaging, 4, 234-266.
  • 4. Duric N., Littrup P., Poulo L., Babkin A., Pevzner R., Holsapple E., Rama O., Glide C. (2007), Detection of breast cancer with ultrasound tomography: First results with the Computed Ultrasound Risk Evaluation (CURE) prototype, Medical Physics, 34, 2, 773-785.
  • 5. Ermert H., Keitmann O., Oppelt R., Granz B., Pesavento A., Vester M., Tillig B., Sander V. (2000), A New Concept for a Real-Time Ultrasound Transmission Camera, IEEE Ultrasonics Symp. Proc., 1611-1614.
  • 6. Filipczyński L. (1983), Detectability of calcifications in breast tissues by the ultrasonic echo method, Archives of Acoustics, 8, 3, 205-222.
  • 7. Gudra T., Opieliński K.J. (2006), The ultrasonic probe for the investigating of internal object structure by ultrasound transmission tomography, Ultrasonics, 44, 1-4, e295-e302.
  • 8. Hoskins P.R. (2010), Elastography Physics and Equipment [in:] Diagnostic Ultrasonud Physics and Equimpment, Hoskins P.R., Martin K., Thrush A. [Eds.], Cambridge University Press, Cambridge, 196-214.
  • 9. Kak A.C., Slaney M. (1988), Principles of Computerized Tomographic Imaging, IEEE Press, New York.
  • 10. Nowicki A. (2010), Ultrasound in medicine - introduction to modern ultrasonography [in Polish], Wydawnictwo IPPT PAN, Warszawa.
  • 11. Opieliński K.J., Gudra T. (2006), Multi-parameter ultrasound transmission tomography of biological media, Ultrasonics, 44, 1-4, e295-e302.
  • 12. Opieliński K., Gudra T. (2008), Nondestructive tests of cylindrical steel samples using the ultrasonic projection method and the ultrasound transmission tomography method, Acoustics ’08, Paris, 4919-4924.
  • 13. Opieliński K.J., Gudra T. (2010), Ultrasonic Transmission Tomography [in:] Industrial and Biological Tomography, Sikora J., Wojtowicz S. [Eds.], pp. 263-338, Wydawnictwo Książkowe Instytutu Elektrotechniki, Warszawa.
  • 14. Opieliński K.J. (2011), Application of transmission waves for characterization and imaging of biological media structures [in Polish], Oficyna Wydawnicza PWr., Wrocław.
  • 15. Opieliński K.J. (2012), Ultrasonic Projection [in:] Ultrasonic Waves, Antunes Dos Santos Junior [Ed.], pp. 29-58, INTECH, Rijeka.
  • 16. Pruszyński B. (2000), Radiology, RTG, CT, USG,MRI Image Diagnostics and Radioisotopes [in Polish], PZWL, Warszawa.
  • 17. Quan Y., Huang L. (2007), Sound-speed tomography using first-arrival transmission ultrasound for a ring array, Proceedings of SPIE, 6513, 651306-1-9.
  • 18. Reguieg D., Padilla F., Defontaine M., Patat F., Laugier P. (2006), Ultrasonic Transmission Device Based on Crossed Beam Forming, IEEE Ultrasonic Symp. Proc., 2, Vancouver, Canada, 2108-2111.
  • 19. Ruiter N.V., Zapf M., Stotzka R., Müller T.O., Schlote-Holubek K., Göbel G., Gemmeke H. (2005), First Images with a 3D-Prototype for Ultra-sound Computer Tomography, IEEE Ultrasonics Symp. Proc., 4, Rotterdam, 2042-2045.
  • 20. Stotzka R., Würfel J., Müller T.O., Gemmeke H. (2002), Medical Imaging by Ultrasound-Computer tomography, Proc. SPIE, 4687, 110-119.
  • 21. Wang A.S., Pelc N.J. (2011), Synthetic CT: Simulating low dose single and dual energy protocols from adual energy scan, Medical Physics, 38, 10, 5551-5562.
  • 22. Watkins Ch.D., Sadun A., Marenka S. (1993), Modern Image Processing: Warping, Morphing and Classical Techniques, Academic Press.
  • 23. Wronkowski Z., Zwierno M. (2000), Brest cancer -practical information - interview, diagnostics, classification of changes [in Polish], Służba Zdrowia, 24-26, 2917-2919.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5df4ed3e-457a-4454-ac5b-395f87800d24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.