Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main purpose of this paper is to establish the asymptotic properties of the expectation and variance of periodogram for nonstationary, almost periodically correlated time series. We expand our consideration to the whole bifrequency square (0; 2π]2. We show the exact form of asymptotic covariance between two values of periodogram which are calculated at different points. This result implies that periodogram is not consistent in mean square sense for any point from bifrequency square (0; 2π]2. Finally, under the moment and α-mixing condition, we prove the consistency of smoothed periodogram.
Czasopismo
Rocznik
Tom
Strony
305--324
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Department of Econometrics, The Graduate School of Business–National Louis University, ul. Zielona 27, 33-600 Nowy Sącz, Poland
Bibliografia
- [1] P. Bloomfield, H. Hurd and R. Lund, Periodic correlation in stratospheric ozone time series, J. Time Ser. Anal. 15 (2) (1994), pp. 127-150.
- [2] E. Broszkiewicz-Szuwaj, A. Makagon, R. Weron and A. Wył oma ´nska, On detecting and modeling periodic correlation in financial data, Phys. A 336 (2003), pp. 196-205.
- [3] C. Corduneanu, Almost Periodic Functions, Interscience Publishers,Wiley, New York 1968.
- [4] D. Dehay and J. Leśkow, Testing stationarity for stock market data, Econom. Lett. 50 (1996), pp. 205-212.
- [5] P. Doukhan, Mixing: Properties and Examples, Lecture Notes in Statist. Vol. 85, Springer, New York 1994.
- [6] W. A. Gardner, Introduction to Random Processes with Applications to Signal and Systems, McGraw-Hill, New York 1990.
- [7] W. A. Gardner, Cyclostationarity in Communications and Signal Processing, IEEE Press, New York 1994.
- [8] W. A. Gardner, A. Napolitano and L. Paura, Cyclostationarity: Half a century of research, Signal Process 86 (2006), pp. 639-697.
- [9] E. G. Gladyshev, Periodically correlated random sequence, Sov. Math. 2 (1961), pp. 385-388.
- [10] E. G. Gladyshev, Periodically and almost periodically correlated random processes with continuous time parameter, Theory Probab. Appl. 8 (2) (1963), pp. 173-177.
- [11] V. Grenander and M. Rosenblatt, Statistical spectral analysis of time series arising from stochastic processes, Ann. Math. Statist. 24 (1953), pp. 537-558.
- [12] H. Hurd, An investigation of periodically correlated stochastic processes, PhD Thesis, Duke University, Department of Electrical Engineering, 1969.
- [13] H. Hurd, Correlation theory for the almost periodically correlated processes with continuous time parameter, J. Multivariate Anal. 37 (1989), pp. 24-45.
- [14] H. Hurd, Correlation theory of almost periodically correlated processes, J. Multivariate Anal. 37 (1) (1991), pp. 24-45.
- [15] H. Hurd and N. L. Gerr, Graphical methods for determining the presence of periodic correlation, J. Time Ser. Anal 12 (4) (1991), pp. 337-350.
- [16] H. Hurd and J. Leśkow, Estimation of the Fourier coefficient functions and their spectral densities for Á-mixing almost periodically correlated processes, Statist. Probab. Lett. 14 (4) (1992), pp. 299-306.
- [17] K. Y. Kim, G. R. North and J. Huang, EOFs of one-dimensional cyclostationary time series: Computations, examples, and stochastic modeling, J. Atmospheric Sci. 53 (7) (1996), pp. 1007-1017.
- [18] H. R. Kunsch, The jackknife and bootstrap for general stationary observation, Ann. Statist. 17 (3) (1989), pp. 1217-1241.
- [19] J. Leśkow, Asymptotic normality of the spectral density estimator for almost periodically correlated stochastic processes, Stochastic Process. Appl. 52 (1994), pp. 351-360.
- [20] J. Leśkow, The impact of stationarity assessment on studies of volatility and value-at-risk, Math. Comput. Modelling 34 (2001), pp. 1213-1222.
- [21] D. R. Osborn and J. P. Smith, The performance of periodic autoregressive models in forecasting seasonal UK consumption, J. Bus. Econom. Statist. 7 (1989), pp. 117-127.
- [22] E. Parzen and M. Pagano, An approach to modeling seasonally stationary time-series, J. Econometrics 9 (1979), pp. 137-153.
- [23] D. Politis, J. Romano and M. Wolf, Subsampling, Springer, New York 1999.
- [24] M. B. Priestley, Spectral Analysis and Time Series, Academic Press, London 1981.
- [25] J. G. ·Zurbenko, The Spectral Analysis of Time Series, North-Holland, Amsterdam 1986.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5df44d28-d8cf-44be-ae3e-13a230bcd95b