PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A multiscale methodology for CFD simulation of catalytic distillation bale packings

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A multiscale model for simulating the hydrodynamic behavior of catalytic bale packings has been proposed. This model combines computational fluid dynamics (CFD) and macroscopic calculation. At small scale calculation, the CFD model includes 3-D volume-of-fluid (VOF) simulation within representative elementary unit (REU) under unsteady-state conditions. The REU constitutes gauze and catalyst domain, and porous media model is applied. At large scale calculation, a new mechanistic model deduced from the unit network model is employed. Based on liquid split proportion from small scale calculation, liquid distribution of the entire bale packing can be predicted. To evaluate different packing design, three common bale arrangements, i.e. one-bale, nine-bales and seven-bales, are compared. The area-weighted Christiansen uniformity coefficient is introduced to assess the distribution performance. A comparison between simulation and experimental results is made to validate the multiscale model. The present methodology is proved to be effective to analysis and design of catalytic distillation columns.
Słowa kluczowe
Rocznik
Strony
24--32
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Research Institute of Petroleum Processing, SINOPEC, Beijing 100083,China
autor
  • Tianjin University, School of Chemical Engineering and Technology, Tianjin 300072, China
  • Tianjin University, State Key Laboratory of Chemical Engineering, Tianjin 300072, China
  • Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
autor
  • Tianjin University, School of Chemical Engineering and Technology, Tianjin 300072, China
  • Tianjin University, State Key Laboratory of Chemical Engineering, Tianjin 300072, China
  • Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Bibliografia
  • 1. Klöker, M., Kenig, E.Y., Górak, A., Markusse, A.P., Kwant, G. & Moritz, P. (2004). Investigation of different column configurations for the ethyl acetate synthesis via reactive distillation. Chem. Eng. Process. 43, 791–801. DOI: 10.1016/S0255-2701(03)00084-9.
  • 2. Tian, H., Huang, Z., Qiu, T., Wang, X.D. & Wu, Y.X. (2012). Reactive distillation for producing n-butyl acetate: Experiment and simulation. Chin. J. Chem. Eng. 20(5), 980–987. DOI: 10.1016/S1004-9541(12)60426-1.
  • 3. Agarwal, M., Singh, K. & Chaurasia, S.P. (2012). Simulation and sensitivity analysis for biodiesel production in a reactive distillation column. Pol. J. Chem. Technol. 14, 59–65. DOI: 10.2478/v10026-012-0085-2.
  • 4. Zhang, X., Zhang, S. & Jian, C. (2011). Synthesis of methylal by catalytic distillation. Chem. Eng. Res. Des. 89, 573–580. DOI: 10.1016/j.cherd.2010.09.002.
  • 5. Huang, K. & Wang, S.J. (2007). Design and control of a methyl tertiary butyl ether (MTBE) decomposition reactive distillation column. Ind. Eng. Chem. Res. 46, 2508–2519. DOI: 10.1021/ie061204c.
  • 6. Vanaki, A. & Eslamloueyan, R. (2012). Steady-state simulation of a reactive internally heat integrated distillation column (R-HIDiC) for synthesis of tertiary-amyl methyl ether (TAME). Chem. Eng. Process. 52, 21–27. DOI: 10.1016/j.cep.2011.12.005.
  • 7. Bisowarno, B.H., Tian, Y.C. & Tadé, M.O. (2004). Application of side reactors on ETBE reactive distillation. Chem. Eng. J. 99, 35–43. DOI: 10.1016/j.cej.2003.09.004.
  • 8. González-Rugerio, C.A., Fuhrmeister, R., Sudhoff, D., Pilarczyk, J. & Górak, A. (2014). Optimal design of catalytic distillation columns: A case study on synthesis of TAEE. Chem. Eng. Res. Des. 92, 391–404. DOI: 10.1016/j.cherd.2013.08.030.
  • 9. Xu, X., Zhao, Z. & Tian, S. (1997). Study on catalytic distillation processes part III: Prediction of pressure drop and holdup in catalyst bed. Trans IChemE. 75, 625–629. DOI: 10.1205/026387697524155.
  • 10. Ding, H.D., Xiang, W.Y., Song, N., Liu, C.J. & Yuan, X.G. (2014). Hydrodynamic behavior and residence time distribution of industrial-scale bale packings. Chem. Eng. Technol. 37(7), 1127–1136. DOI: 10.1002/ceat.201300824.
  • 11. Ratheesh, S. & Kannan, A. (2004). Holdup and pressure drop studies in structured packings with catalysts. Chem. Eng. J. 104, 45–54. DOI: 10.1016/j.cej.2004.08.004.
  • 12. Behrens, M., Olujić, Ž. & Jansens, P.J. (2007). Liquid flow behavior in catalyst-containing pockets of modular catalytic structured packing Katapak SP. Ind. Eng. Chem. Res. 46, 3884–3890. DOI: 10.1021/ie060985e.
  • 13. Kołodziej, A., Jaroszyński, M., Schoenmakers, H., Althaus, K., Geißler, E., Üblerb, C. & Kloeker, M. (2005). Dynamic tracer study of column packings for catalytic distillation. Chem. Eng. Process. 44, 661–670. DOI: 10.1016/j.cep.2004.05.017.
  • 14. Noeres, C., Hoffmann, A. & Górak, A. (2002). Reactive distillation: Non-ideal flow behaviour of the liquid phase in structured catalytic packings. Chem. Eng. Sci. 57, 1545–1549. DOI: 10.1016/S0009-2509(02)00028-3.
  • 15. Viva, A., Aferka, S., Brunazzi, E., Marchot, P., Crine, M. & Toye, D. (2011). Processing of X-ray tomographic images: A procedure adapted for the analysis of phase distribution in MellapakPlus 752.Y and Katapak-SP packings. Flow. Meas. Instrum. 22, 279–290. DOI: 10.1016/j.fl owmeasinst.2011.03.008.
  • 16. Viva, A., Aferka, S., Toye, D., Marchot, P., Crine, M. & Brunazzi, E. (2011). Determination of liquid hold-up and flow distribution inside modular catalytic structured packings. Chem. Eng. Res. Des. 89, 1414–1426. DOI: 10.1016/j.cherd.2011.02.009.
  • 17. Aferka, S., Marchot, P., Crine, M. & Toye, D. (2010). Interfacial area measurement in a catalytic distillation packing using high energy X-ray CT. Chem. Eng. Sci. 65, 511–516. DOI: 10.1016/j.ces.2009.05.048.
  • 18. van Baten, J.M. & Krishna, R. (2002). Gas and liquid phase mass transfer within KATAPAK-S® structures studied using CFD simulations. Chem. Eng. Sci. 57, 1531–1536. DOI: 10.1016/S0009-2509(02)00026-X.
  • 19. van Baten, J.M. & Krishna, R. (2001). Liquid-phase mass transfer within KATAPAK-S® structures studied using computational fluid dynamics simulations. Catal. Today. 69, 371–377. DOI: 10.1016/S0920-5861(01)00394-7.
  • 20. van Baten, J.M., Ellenberger J., Krishna R. (2001). Radial and axial dispersion of the liquid phase within a KATAPAK-S® structure: experiments vs. CFD simulations. Chem. Eng. Sci. 56, 813–821. DOI: 10.1016/S0009-2509(00)00293-1.
  • 21. Dai, C., Lei, Z., Li, Q. & Chen, B. (2012). Pressure drop and mass transfer study in structured catalytic packings. Sep. Purif. Technol. 98, 78–87. DOI: 10.1016/j.seppur.2012.06.035.
  • 22. van Gulijk, C. (1998). Using computational fluid dynamics to calculate transversal dispersion in a structured packed bed. Comput. Chem. Eng. 22, S767–S770. DOI: 10.1016/S0098-1354(98)00144-6.
  • 23. Klöker, M., Kenig, E.Y. & Górak, A. (2003). On the development of new column internals for reactive separations via integration of CFD and process simulation. Catal. Today. 79–80, 479–485. DOI: 10.1016/S0920-5861(03)00068-3.
  • 24. Egorov, Y., Menter, F., Klöker, M. & Kenig, E.Y. (2005). On the combination of CFD and rate-based modeling in the simulation of reactive separation processes. Chem. Eng. Process. 44, 631–644. DOI: 10.1016/j.cep.2003.10.011.
  • 25. Petre, C.F., Larachi, F., Iliuta, I. & Grandjean, B.P.A. (2003). Pressure drop through structured packings: Breakdown into the contributing mechanisms by CFD modeling. Chem. Eng. Sci. 58, 163–177. DOI: 10.1016/S0009-2509(02)00473-6.
  • 26. Larachi, F., Petre, C.F., Iliuta, I. & Grandjean, B.P.A. (2003). Tailoring the pressure drop of structured packings through CFD simulations. Chem. Eng. Process. 42, 535–541. DOI: 10.1016/S0255-2701(02)00073-9.
  • 27. Sun, B., He, L., Liu, B.T., Gu, F., Liu, C.J. (2013). A new multiscale model based on CFD and macroscopic calculation for corrugated structured packing column. AIChE. J. 59, 3119–3130. DOI: 10.1002/aic.14082.
  • 28. Atta, A., Roy, S., Nigam, K.D.P. (2007). Investigation of liquid maldistribution in trickle-bed reactors using porous media concept in CFD. Chem. Eng. Sci. 62, 7033–7044. DOI: 10.1016/j.ces.2007.07.069.
  • 29. Fluent Inc., FLUENT 6.3 Documentation, ANSYS Inc., USA, 2006[2014-05-15], http://aerojet.engr.ucdavis.edu/fl uenthelp/html/ug/node1.htm
  • 30. Hosseini, S.H., Shojaee, S., Ahmadi, G. & Zivdar, M. (2012). Computational fluid dynamics studies of dry and wet pressure drops in structured packings. J. Ind. Eng. Chem. 18, 1465–1473.
  • 31. Jackson, G.W. & James, D.F. (1986). The permeability of fibrous porous media. Can. J. Chem. Eng. 64, 364–374. DOI: 10.1002/cjce.5450640302.
  • 32. Caetano, M.G., González, J.C. & Solari, R.B. (2004). Flowdynamic modeling of bale-type catalytic distillation packings. Sep. Sci. Tech. 39, 855–877. DOI: 10.1081/SS-120028450.
  • 33. Akbarnejad, M.M., Safekordi, A.A. & Zarrinpashne, S. (2000). A study on the capacity of reactive distillation bale packings: Experimental measurements, evaluation of the existing models, and preparation of a new model. Ind. Eng. Chem. Res. 39, 3051–3058. DOI: 10.1021/ie9904706.
  • 34. Rocha, J.A., Bravo, J.L. & Fair, J.R. (1996). Distillation columns containing structured packings: A comprehensive model for their performance. 2.mass-transfer model. Ind. Eng. Chem. Res. 35, 1660–1667.
  • 35. de Brito, M.H., von Stockar, U., Bangerter, A.M., Bomio, P. & Laso, M. (1994). Effective mass-transfer area in a pilot plant column equipped with structured packings and with ceramic rings. Ind. Eng. Chem. Res. 33, 647–656. DOI: 10.1021/ie00027a023.
  • 36. Brunazzi, E., Nardini, G., Paglianti, A. & Petarca, L. (1995). Interfacial area of mellapak packing: absorption of 1,1,1-trichloroethane by genosorb 300. Chem. Eng. Technol. 18, 248–255. DOI: 10.1002/ceat.270180405.
  • 37. Billet, R. & Schultes, M. (1995). Fluid dynamics and mass transfer in the total capacity range of packed columns up the fl ood point. Chem. Eng. Technol. 18, 371–379. DOI: 10.1002/ceat.270180602.
  • 38. Olujić, Ž., Kamerbeek, A.B. & de Graauw, J. (1999). A corrugation geometry based model for efficiency of structured distillation packing. Chem. Eng. Process. 38, 683–695. DOI: 10.1016/S0255-2701(99)00068-9.
  • 39. Hoek, P.J., Wessinlingh, J.A. & Zuiderweg, F.J. (1986). Small scale and large scale liquid mal-distribution in packed columns. Chem. Eng. Res. Des. 64, 431–449.
  • 40. Christiansen, J.E. (1948). Irrigation by Sprinkling, University of California Press, USA.
  • 41. Chinese National Standard. GB50085-2007T.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5def2198-36ed-475c-b45d-d8b7c591899a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.