PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Signal-piloted processing metaheuristic optimization and wavelet decomposition based elucidation of arrhythmia for mobile healthcare

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The next generation healthcare systems will be based on the cloud connected wireless biomedical wearables. The key performance indicators of such systems are the compression, computational efficiency, transmission and power effectiveness with precision. The electrocardiogram (ECG) signals processing based novel technique is presented for the diagnosis of arrhythmia. It employs a novel mix of the Level-Crossing Sampling (LCS), Enhanced Activity Selection (EAS) based QRS complex selection, multirate processing, Wavelet Decomposition (WD), Metaheuristic Optimization (MO), and machine learning. The MIT-BIH dataset is used for experimentation. Dataset contains 5 classes namely, ‘‘Atrial premature contraction”, ‘‘premature ventricular contraction”, ‘‘right bundle branch block”, ‘‘left bundle branch block” and ‘‘normal sinus”. For each class, 450 cardiac pulses are collected from 3 different subjects. The performance of Marine Predators Algorithm (MPA) and Artificial Butterfly Optimization Algorithm (ABOA) is investigated for features selection. The selected features sets are passed to classifiers that use machine learning for an automated diagnosis. The performance is tested by using multiple evaluation metrics while following the 10-fold cross validation (10-CV). The LCS and EAS results in a 4.04-times diminishing in the average count of collected samples. The multirate processing lead to a more than 7-times computational effectiveness over the conventional fix-rate counter parts. The respective dimension reduction ratios and classification accuracies, for the MPA and ABOA algorithms, are 29.59-times & 22.19-times and 98.38% & 98.86%.
Twórcy
  • Dept. of Electrical and Computer Engineering, Effat University, Jeddah, Saudi Arabia
  • Department of Electronics and Communication Engineering, Sreenidhi Institute of Science and Technology, Hyderabad, India
  • University of Bordeaux, CNRS, Bordeaux INP, IMS, UMR, Talence, France
  • Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Krakow, Poland
  • Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Gliwice, Poland
Bibliografia
  • [1] Benjamin EJ et al. Heart disease and stroke Statistics-2019 update a report from the American Heart Association. Circulation 2019.
  • [2] Banerjee S, Mitra M. Application of cross wavelet transform for ECG pattern analysis and classification. IEEE Trans Instrum Meas 2013;63(2):326–33.
  • [3] Raj S, Ray KC. ECG signal analysis using DCT-based DOST and PSO optimized SVM. IEEE Trans Instrum Meas 2017;66(3):470–8.
  • [4] Tueche F, Mohamadou Y, Djeukam A, Kouekeu LCN, Seujip R, Tonka M. Embedded algorithm for QRS detection based on signal shape. IEEE Trans Instrum Meas 2021;70:1–12.
  • [5] Josko A, Rak RJ. Effective simulation of signals for testing ECG analyzer. IEEE Trans Instrum Meas 2005;54(3):1019–24.
  • [6] Keenan E, Karmakar C, Brownfoot FC, Palaniswami M. Personalized anatomic modeling for noninvasive fetal ECG: methodology and applications. IEEE Trans Instrum Meas 2021;70:1–12.
  • [7] Hammad M, Iliyasu AM, Subasi A, Ho ES, Abd El-Latif AA. A multitier deep learning model for arrhythmia detection. IEEE Trans Instrum Meas 2020;70:1–9.
  • [8] Qaisar SM, Dallet D. ECG noise removal and efficient arrhythmia identification based on effective signal-piloted processing and machine learning. IEEE 2021:1–6.
  • [9] Sahoo S, Kanungo B, Behera S, Sabut S. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 2017;108:55–66.
  • [10] Yildirim O, Baloglu UB, Tan R-S, Ciaccio EJ, Acharya UR. A new approach for arrhythmia classification using deep coded features and LSTM networks. Comput Methods Programs Biomed 2019;176:121–33.
  • [11] Atal DK, Singh M. Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network. Comput Methods Programs Biomed 2020;196105607.
  • [12] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, et al. A deep convolutional neural network model to classify heartbeats. Comput Biol Med 2017;89:389–96.
  • [13] Huang J, Chen B, Yao B, He W. ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network. IEEE Access 2019;7:92871–80.
  • [14] Al Rahhal MM, Bazi Y, AlHichri H, Alajlan N, Melgani F, Yager RR. Deep learning approach for active classification of electrocardiogram signals. Inf Sci 2016;345:340–54.
  • [15] Oh SL, Ng EY, San Tan R, Acharya UR. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput Biol Med 2018;102:278–87.
  • [16] Yıldırım Ö, Pławiak P, Tan R-S, Acharya UR. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med 2018;102:411–20.
  • [17] Qaisar SM, Hussain SF. An effective arrhythmia classification via ECG signal subsampling and mutual information based subbands statistical features selection. J Ambient Intell Humaniz Comput 2021:1–15.
  • [18] Hou B, Yang J, Wang P, Yan R. LSTM-based auto-encoder model for ECG arrhythmias classification. IEEE Trans Instrum Meas 2019;69(4):1232–40.
  • [19] Mian Qaisar S, Fawad Hussain S. Arrhythmia diagnosis by using level-crossing ECG sampling and sub-bands features extraction for mobile healthcare. Sensors 2020;20(8):2252.
  • [20] Majumder S, Chen L, Marinov O, Chen C-H, Mondal T, Deen MJ. Noncontact wearable wireless ECG systems for long-term monitoring. IEEE Rev Biomed Eng 2018;11:306–21.
  • [21] Deepu CJ, Zhang X, Heng CH, Lian Y. A 3-lead ECG-on-chip with QRS detection and lossless compression for wireless sensors. IEEE Trans Circuits Syst II Express Briefs 2016;63(12):1151–5.
  • [22] Chen Z, Luo J, Lin K, Wu J, Zhu T, Xiang X, et al. An energy-efficient ECG processor with weak-strong hybrid classifier for arrhythmia detection. IEEE Trans Circuits Syst II Express Briefs 2018;65(7):948–52.
  • [23] Ravanshad N, Rezaee-Dehsorkh H, Lotfi R, Lian Y. A level-crossing based QRS-detection algorithm for wearable ECG sensors. IEEE J Biomed Health Inform 2013;18(1):183–92.
  • [24] Marisa T et al. Pseudo asynchronous level crossing ADC for ECG signal acquisition. IEEE Trans Biomed Circuits Syst 2017;11(2):267–78.
  • [25] Tekeste T, Saleh H, Mohammad B, Is M. Ultra-low power QRS detection and ECG compression architecture for IoT healthcare devices. IEEE Trans Circuits Syst Regul Pap 2018;66(2):669–79.
  • [26] Mazaheri V, Khodadadi H. Heart arrhythmia diagnosis based on the combination of morphological, frequency and nonlinear features of ECG signals and metaheuristic feature selection algorithm. Expert Syst Appl 2020;161 113697.
  • [27] Abdelazez M, Rajan S, Chan AD. Detection of atrial fibrillation in compressively sensed electrocardiogram measurements. IEEE Trans Instrum Meas 2020;70:1–9.
  • [28] Yang Z, Zhou Q, Lei L, Zheng K, Xiang W. An IoT-cloud based wearable ECG monitoring system for smart healthcare. J Med Syst 2016;40(12):286.
  • [29] Jiang Y, Qi Y, Wang WK, Bent B, Avram R, Olgin J, et al. EventDTW: an improved dynamic time warping algorithm for aligning biomedical signals of nonuniform sampling frequencies. Sensors 2020;20(9):2700.
  • [30] Mitra D, Zanddizari H, Rajan S. Investigation of kronecker-based recovery of compressed ecg signal. IEEE Trans Instrum Meas 2019;69(6):3642–53.
  • [31] Zhang J, Yu ZL, Gu Z, Li Y, Lin Z. Multichannel electrocardiogram reconstruction in wireless body sensor networks through weighted $\ell_ 1, 2 $ minimization. IEEE Trans Instrum Meas 2018;67(9):2024–34.
  • [32] Pandagre KN, Detection of Arrhythmia Disease in Ecg Signal Using Optimal Features, Int J Inf Technol IJIT, 2020; 6 (5).
  • [33] Houssein EH, Ibrahim IE, Neggaz N, Hassaballah M, Wazery YM. An efficient ECG arrhythmia classification method based on Manta ray foraging optimization. Expert Syst Appl 2021;181 115131.
  • [34] Qaisar SM. Efficient mobile systems based on adaptive rate signal processing. Comput Electr Eng 2019;79 106462.
  • [35] Qaisar SM, Fesquet L, An Effective QRS selection based on the level-crossing sampling and activity selection, 2020; 1–5.
  • [36] Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag 2001;20(3):45–50.
  • [37] Antoniou A. Digital signal processing. McGraw-Hill; 2016.
  • [38] Mian Qaisar S, Échantillonnage et traitement conditionnés par le signal: une approche prometteuse pour des traitements efficaces à pas adaptatifs, 2009.
  • [39] Qaisar SM, Akbar M, Beyrouthy T, Al-Habib W, Asmatulah M, An error measurement for resampled level crossing signal, 2016; 1–4.
  • [40] Anwar SM, Gul M, Majid M, Alnowami M. Arrhythmia classification of ECG signals using hybrid features. Comput Math Methods Med 2018;2018:1–8.
  • [41] Li T, Zhou M. ECG classification using wavelet packet entropy and random forests. Entropy 2016;18(8):285.
  • [42] Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst Appl 2020;152 113377.
  • [43] Qi X, Zhu Y, Zhang H. A new meta-heuristic butterfly-inspired algorithm. J Comput Sci Nov. 2017;23:226–39. https://doi.org/10.1016/j.jocs.2017.06.003.
  • [44] Subasi A. Practical guide for biomedical signals analysis using machine learning techniques: A MATLAB based approach. In: Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques. Elsevier; 2019. p. 27–87.
  • [45] Koren I. Computer arithmetic algorithms. CRC Press; 2018.
  • [46] Emary E, Zawbaa HM, Hassanien AE. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016;172:371–81.
  • [47] Too J, Abdullah AR, Mohd Saad N, Mohd Ali N. Feature selection based on binary tree growth algorithm for the classification of myoelectric signals. Machines 2018;6(4):65.
  • [48] Bishop CM. Pattern recognition and machine learning. Springer; 2006.
  • [49] Klee H, Allen R. Simulation of dynamic systems with MATLAB® and Simulink®. CRC Press 2018.
  • [50] Chan Y, Walmsley RP. Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups. Phys Ther 1997;77(12):1755–61.
  • [51] Kennedy-Shaffer L. Before p< 0.05 to beyond p< 0.05: using history to contextualize p-values and significance testing. Am Stat 2019;73(sup1):82–90.
  • [52] Khan SI, Qaisar SM, Pachori RB. Automated classification of valvular heart diseases using FBSE-EWT and PSR based geometrical features. Biomed Signal Process Control 2022;73103445.
  • [53] Massa F, Meli R, Grazzini M, Famà F, De Carli F, Filippi L, et al. Utility of quantitative EEG in early Lewy body disease. Parkinsonism Relat Disord 2020;75:70–5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5dee80b3-88e0-48c2-b843-9e084447e1eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.