PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Data mining models to predict ocean wave energy flux in the absence of wave records

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ocean wave energy is known as a renewable energy resource with high power potential and without negative environmental impacts. Wave energy has a direct relationship with the ocean’s meteorological parameters. The aim of the current study is to investigate the dependency between ocean wave energy flux and meteorological parameters by using data mining methods (DMMs). For this purpose, a feed-forward neural network (FFNN), a cascade-forward neural network (CFNN), and gene expression programming (GEP) are implemented as different DMMs. The modeling is based on historical meteorological and wave data taken from the National Data Buoy Center (NDBC). In all models, wind speed, air temperature, and sea temperature are input parameters. In addition, the output is the wave energy flux which is obtained from the classical wave energy flux equation. It is notable that, initially, outliers in the data sets were removed by the local distribution based outlier detector (LDBOD) method to obtain the best and most accurate results. To evaluate the performance and accuracy of the proposed models, two statistical measures, root mean square error (RMSE) and regression coefficient (R), were used. From the results obtained, it was found that, in general, the FFNN and CFNN models gave a more accurate prediction of wave energy from meteorological parameters in the absence of wave records than the GEP method.
Słowa kluczowe
Rocznik
Strony
119--129
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
  • Amirkabir University of Technology, Department of Maritime Engineering Hafez Ave, No 424, P.O. Box 15875-4413, Tehran, Iran
autor
  • Amirkabir University of Technology, Department of Maritime Engineering Hafez Ave, No 424, P.O. Box 15875-4413, Tehran, Iran
autor
  • Amirkabir University of Technology, Department of Maritime Engineering Hafez Ave, No 424, P.O. Box 15875-4413, Tehran, Iran
Bibliografia
  • 1. Amirkhani, S., Nasirivatan, Sh., Kasaeian, A.B. & Hajinezhad, A. (2015) ANN and ANFIS models to predict the performance of solar chimney power plants. Renewable Energy 83. pp. 597–607.
  • 2. Barnett, V. & Lewis, T. (1994) Outliers in Statistical Data. John Wiley & Sons, 3rd edition.
  • 3. Benardos, AG. & Kaliampakos, D.C. (2004) Modelling TBM performance with artificial neural networks. Tunnelling and Underground Space Technology 19 (6). pp. 597– 605.
  • 4. Bishop, C. (1995) Neural Networks for Pattern Recognition. New York: Oxford University Press.
  • 5. Blonbou, R., Monjoly, S. & Dorville, JF. (2011) An adaptive short-term prediction scheme for wind energy storage management. Energy Conversion and Management 52 (6). pp. 2412-2416.
  • 6. Boronowski, S., Wild, P., Rowe, A. & Van Kooten, G.C. (2010) Integration of wave power in HaidaGwaii. Renewable Energy 35. pp. 2415–3242.
  • 7. Breunig, M.M., Kriegel, H.P., Ng, R.T. & Sander, J. (2000) LOF: Identifying density-based local outliers. Proceedings of the 2000 ACMSIGMOD International Conference Management of Data (SIGMOD’ 00), Dallas, Texas.
  • 8. Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G.A. & Pavan, M. (2016) A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renewable Energy 90. pp. 501–512.
  • 9. Chiu, S. (1994) Fuzzy Model Identification Based on Cluster Estimation. Journal of Intelligent& Fuzzy Systems 2 (3).
  • 10. Cornejo-Bueno, L., Nieto-Borge, J.C., García-Díaz, P., Rodríguez, G. & Salcedo-Sanz, S. (2016) Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm – Extreme Learning Machine approach. Renewable Energy 97. pp. 380–389.
  • 11. Di Piazza, A.D., Di Piazza, M.C., Ragusa, A. & Vitale, G. (2011) Environmental data processing by clustering methods for energy forecast and planning. Renewable Energy 36 (3). pp. 1063–1074.
  • 12. Doucoure, B., Agbossou, K. & Cardenas, A. (2016) Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renewable Energy 92. pp. 202–211.
  • 13. Ebrahimabadi, A., Azimipour, M. & Bahreini, A. (2015) Prediction of roadheaders’ performance using artificial neural network approaches (MLP and KOSFM). Journal of Rock Mechanics and Geotechnical Engineering 7. pp. 573–583.
  • 14. Falcao, A.F. (2010) Wave energy utilization: a review of the technologies. Renewable and Sustainable Energy Reviews 14 (3). pp. 899–918.
  • 15. Fayyad, U., Shapiro, G.P. & Smyth, P. (1996) The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM 39 (11).pp. 27–34.
  • 16. Fernández, J.C., Salcedo-Sanz, S., Gutiérrez, P.A., Alexandre, E. & Hervás-Martínez, C. (2015) Significant wave height and energy flux range forecast with machine learning classifiers. Engineering Applications of Artificial Intelligence 43. pp. 44–53.
  • 17. Ferreira, C. (2001) Gene expression programming in problem solving. In: Roy, R., Koeppen, M., Ovaska, S., Furuhashi, T. & Hoffmann, F. (Eds.), Soft Computing and Industry. Springer, UK, pp. 635–653.
  • 18. Ferreira, C. (2006) Gene-expression programming: mathematical modeling by an artificial intelligence. Berlin, Germany: Springer.
  • 19. Ferreria C. (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13 (2). pp. 87–129.
  • 20. Gairaa, K., Khellaf, A., Messlem, Y. & Chellali, F. (2016) Estimation of the daily global solar radiation based on Box–Jenkins and ANN models: A combined approach. Renewable and Sustainable Energy Reviews 57. pp. 238– 249.
  • 21. Grady, S.A., Hussaini, M.Y. & Abdullah M.M. (2005) Placement of wind turbines using genetic algorithms. Renewable Energy 30 (2). pp. 259–270.
  • 22. Grubbs, F.E. (1969) Procedures for detecting outlying observations in samples. Technometrics 11. pp. 1–21.
  • 23. Guillermo, V. (1998) A Distributed Approach to a Neural Network Simulation Program. Master’s thesis, The University of Texas at El Paso, El Paso, TX.
  • 24. Heinermann, J. & Kramer, O. (2016) Machine learning ensembles for wind power prediction. Renewable Energy 89. pp. 671–679.
  • 25. Holand, J.H. (1975) Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The University of Michigan Press, USA.
  • 26. Kamranzad, B., Chegini, V. & Etemad-Shahidi, A. (2016) Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves. Renewable Energy 94 pp. 341–352.
  • 27. Keshavarz, A. & Mehramiri, M. (2015) New Gene Expression Programming models for normalized shear modulus and damping ratio of sands. Engineering Applications of Artificial Intelligence 45. pp. 464–472.
  • 28. Koza, J.R. (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT press, USA.
  • 29. Kusiak, A. & Li, W. (2011) The prediction and diagnosis of wind turbine faults. Renewable Energy 36 (1). pp. 16–23.
  • 30. Lee, D. (1982) On k-Nearest Neighbor Voronoi Diagrams in the Plane. IEEE transactions on computers
  • 31 (6). 31. Maged, M.H., Khalafallah, M.G. & Hassanien, E.A. (2004) Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling and Software 19 (10). pp. 919–928.
  • 32. Ming, H. & Aggidis, G.A. (2008) Developments, expectations of wave energy converters and mooring anchors in the UK. Journal of Ocean University of China 7 (1). pp. 10–16.
  • 33. Minh Tri, N., Truong, D.Q., Thinh, D.H., Binh, P.C., Dung, D.T, Lee, S., Park, H.G. & Ahn, K.K. (2016) A novel control method to maximize the energy-harvesting capability of an adjustable slope angle wave energy converter. Renewable Energy 97. pp. 518–531.
  • 34. Moller, M.F. (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6 (4). pp. 525–533.
  • 35. Özger, M. (2011) Prediction of ocean wave energy from meteorological variables by fuzzy logic modeling. Expert Systems with Applications 38. pp. 6269–6274.
  • 36. Robin, J., Clive, M. & Ian, S. (2012) The Art of Lisp Programming. Springer Science & Business Media. p. 2. ISBN 9781447117193.
  • 37. Salari, D., Daneshvar, N., Aghazadeh, F. & Khataee, A.R. (2005) Application of artificial neural networks for modeling of the treatment of wastewater contaminated with methyl tert-butyl ether (MTBE) by UV/H2O2 process. Journal of Hazardous Materials 125 (1–3). pp. 205–210.
  • 38. Sannasiraj, S.A. & Sundar, V. (2016) Assessment of wave energy potential and its harvesting approach along the Indian coast. Renewable Energy 99. pp. 398–409.
  • 39. Sarkar, D., Contal, E., Vayatis, N. & Dias, F. (2016) Prediction and optimization of wave energy converter arrays using a machine learning approach. Renewable Energy 97. pp. 504–517.
  • 40. Scott, E., Lebiere, F. & Christian, L. (1990) The Cascade Correlation Learning Architecture. Advances in Neural Information Processing Systems. pp. 524–532.
  • 41. Shukur, O.B. & Lee, H.M. (2015) Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renewable Energy 76. pp. 637–647.
  • 42. Sierra, J.P., Martín, C., Mösso, C., Mestres, M. & Jebbad, R. (2016) Wave energy potential along the Atlantic coast of Morocco. Renewable Energy 96. Part A, pp. 20–32.
  • 43. Tang, B., Song, T., Li, F. & Deng, L. (2014) Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine. Renewable Energy 62. pp. 1–9.
  • 44. Wong, P.K., Wong, K.I., Vong, C.M. & d anCheung, C.S. (2015) Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renewable Energy 74. pp. 640–647.
  • 45. Yadav, A.K. & Chandel, S.S. (2015) Solar energy potential assessment of western Himalayan Indian state of Himachal Pradesh using J48 algorithm of WEKA in ANN based prediction model. Renewable Energy 75. pp. 675–693.
  • 46. Zhang, Y., Yang, S. & Wang, Y. (2008) LDBOD: A novel local distribution based outlier detector. Pattern Recognition Letters 29. pp. 967–976.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5dee67c3-2174-47ff-b9c2-3a788cb8883b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.