
Scientific Journals  Zeszyty Naukowe
of the Maritime University of Szczecin Akademii Morskiej w Szczecinie

Zeszyty Naukowe Akademii Morskiej w Szczecinie 49 (121) 119

2017, 49 (121), 119–129 
ISSN 1733-8670 (Printed) Received:  21.11.2016 
ISSN 2392-0378 (Online) Accepted:  28.02.2017 
DOI: 10.17402/209 Published: 17.03.2017

Data mining models to predict ocean wave 
energy flux in the absence of wave records

Kumars Mahmoodi, Hassan Ghassemi, Hashem Nowruzi
Amirkabir University of Technology, Department of Maritime Engineering 
Hafez Ave, No 424, P.O. Box 15875-4413, Tehran, Iran 
 corresponding author: e-mail: gasemi@aut.ac.ir

Key words: ocean wave energy, meteorological parameters, GEP, LDBOD, DMM, modeling

Abstract
Ocean wave energy is known as a renewable energy resource with high power potential and without negative 
environmental impacts. Wave energy has a direct relationship with the ocean’s meteorological parameters. The 
aim of the current study is to investigate the dependency between ocean wave energy flux and meteorological 
parameters by using data mining methods (DMMs). For this purpose, a feed-forward neural network (FFNN), 
a cascade-forward neural network (CFNN), and gene expression programming (GEP) are implemented as dif-
ferent DMMs. The modeling is based on historical meteorological and wave data taken from the National Data 
Buoy Center (NDBC). In all models, wind speed, air temperature, and sea temperature are input parameters. 
In addition, the output is the wave energy flux which is obtained from the classical wave energy flux equation. 
It is notable that, initially, outliers in the data sets were removed by the local distribution based outlier detector 
(LDBOD) method to obtain the best and most accurate results. To evaluate the performance and accuracy of 
the proposed models, two statistical measures, root mean square error (RMSE) and regression coefficient (R), 
were used. From the results obtained, it was found that, in general, the FFNN and CFNN models gave a more 
accurate prediction of wave energy from meteorological parameters in the absence of wave records than the 
GEP method.

Nomenclature

DDMs Data Mining Methods
FFNN Feed-Forward Neural Network
CFNN Cascade-Forward Neural Network
GEP Gene Expression Programming
NDBC National Data Buoy Center
LDBOD Local Distribution Based Outlier Detector
OFV Outlier Feature Vector
RMSE Root Mean Square Error
n The total number of instances in the data 

set
R Regression Coefficient
p, q, o Some data points in the data set
p* The image point of p
d(p, q) The distance between points p and q
k Number of neighbors
Nk (p) The k-distance neighborhood of p
|N(p)| The number of instances located in Nk (p)

PSD(p,o) The point symmetry distance between 
object p and o

σ The tuning parameter
Ti Measured wave energy corresponding to 

instance i
Oi Predicted wave energy corresponding to 

instance i
 Average of measured wave energies cor-

responding to all instances
 Average of predicted wave energies corre-

sponding to all instances

Introduction

Interest in renewable energy sources has seen 
a recent dramatic increase. This is due partly to pol-
lution, and partly because sources of fossil energy 
are limited. Wave energy is one of the most interest-
ing areas of renewable energy sources for scholars 
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(Ming & Aggidis, 2008; Cornejo-Bueno et al., 2016; 
Kamranzad et al., 2016; Minh Tri et al., 2016; San-
nasiraj & Sundar, 2016).

Wave energy can be used for various purpos-
es, such as the generation of electricity. To convert 
ocean energy into electricity, wave energy con-
verters (WECs) are used (Falcao, 2010). The ener-
gy extracted from waves is sensitive to the type of 
WEC used and its location in the marine environ-
ment. Wave energy output depends on water density, 
wave group celerity, and wave height, while wave 
height is related to wind speed, duration of the wind, 
and fetch length. Group celerity depends on the 
wave period and water depth and the gradients of 
air pressure generate the wind. Given this, the most 
important parameter in characterizing wave energy 
is wave height. It is possible to make a wave energy 
assessment when wave measurements are lacking by 
using meteorological data such as wind speed and air 
and sea temperatures instead of wave data (Özger, 
2011). Therefore, the purpose of the current paper is 
to investigate the relationship between ocean wave 
energy flux and meteorological parameters by using 
some well-known DMMs. These methods allow an 

estimation of the amount of wave energy wherever 
meteorological information is available. To this end, 
a FFNN, a CFNN, and GEP are the DMMs selected 
for the current study.

Data mining is the process of discovering and 
revealing previously unknown, hidden, meaningful, 
and useful patterns in databases (Fayyad, Shapiro, 
& Smyth, 1996). It has arisen from the intersection 
of machine learning, pattern recognition, statistics, 
database management systems, intelligent systems, 
and data visualization. Data mining is widely used 
in many scientific fields. Examples of data mining 
applications in renewable energy research are pre-
sented in Table 1. In our modeling, meteorological 
and wave data from the NDBC are used.

Different parameters may lead to outliers in 
studied data sets. For example, outliers may occur 
due to an error in the measurements. Outliers in 
the data sets must be detected before modeling to 
create models with higher accuracy. In the present 
study, the LDBOD method is applied to detect out-
liers. LDBOD is a powerful data-mining method 
used to detect outliers in multi-dimensional data 
sets.

Table. 1. Different applications of data mining in research in the field of renewable energies

Application Models used in the study Ref.
Prediction of significant wave 
height and energy flux 

Genetic Algorithm – Extreme Learning Machine approach  
(GA-ELM)

(Cornejo-Bueno et al.,  
2016)

Prediction of sea wave energy Fuzzy logic, Artificial Neural Network (ANN) (Özger, 2011)
Prediction and optimization of 
wave energy converter arrays

Active learning, Genetic Algorithm (GA), Gaussian process (Sarkar et al., 2016)

Prediction of the performance of 
solar chimney power plants

ANN, Adaptive Neuro Fuzzy Inference System (ANFIS) (Amirkhani et al., 2015)

Assessment of solar energy 
potential 

ANN, J48 algorithm (Yadav & Chandel, 
2015)

Wind power prediction Decision trees, Support Vector Regression (SVR) (Heinermann & Kramer, 
2016)

Fault diagnosis technique for 
photovoltaic systems

ANN (Chine et al., 2016)

Optimization of biodiesel 
engine performance

Kernel-based Extreme Learning Machine, Cuckoo search (Wong et al., 2015)

Fault diagnosis for a wind tur-
bine transmission system

Orthogonal Neighborhood Preserving Embedding (ONPE), 
 Shannon wavelet support vector machine

(Tang et al., 2014)

Environmental data processing k-means clustering (Di Piazza et al., 2011)
Time series prediction Artificial Wavelet Neural Network (Doucoure et al., 2016)
Estimation of the daily global 
solar radiation

Linear Autoregressive Moving Average (ARMA), ANN (Gairaa et al., 2016)

Placement of wind turbines Gas (Grady et al., 2005)
Wind speed prediction Hybrid KF-ANN (Shukur & Lee, 2015)
Energy storage management ANN, Adaptive learning procedures based on Bayesian approach and 

Gaussian approximation
(Blonbou et al., 2011)

Prediction of wind turbine faults Neural Network (NN), Neural Network Ensemble (NN Ensemble), 
Boosting Tree Algorithm (BTA), Support Vector Machine (SVM)

(Kusiak & Li, 2011)
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The rest of the paper is organized as follows. 
Section 2 is an introduction to the discussed DMMs, 
while data sets are presented in section 3, and wave 
energy calculations are summarized in section 4. 
The modeling experiments are presented in section 
5. Finally, concluding remarks are made in section 6.

Prediction and outlier detection methods

In this section, details of the DMMs used for 
wave energy prediction and outlier detection are 
introduced. Prediction methods include a FFNN, 
a CFNN, and GEP. Moreover, the LDBOD method 
is discussed as regards outlier detection in the stud-
ied data sets.

Feed-forward Neural Network (FFNN)

FFNNs are the most popular and widely-used 
models in many practical applications, and are 
known by many different names, such as “multi-lay-
er perceptron”. FFNNs can be used for any kind of 
input to output mapping and consist of a series of 
layers. Generally, these networks contain three lay-
ers: input, hidden, and output. The first layer has 
a connection from the network input, and each sub-
sequent layer has a connection from the previous 
layer. The final layer produces the network’s output. 
In this network, the information moves in only one 
direction, forward, from the input nodes, through the 
hidden nodes (if any), and to the output nodes. The 
connection between the layers is made by means 
of processing elements called neurons (Benardos 
& Kaliampakos, 2004). The role of neurons in ANNs 
is information processing. This process is performed 
by a mathematical processor called an activation 
function. The activation function can be linear or 
non-linear, and is selected by the user according to 
problem type. If the objective is prediction, the linear 
function must be used in the output layer. Each neu-
ron is connected to its neighbors with varying coeffi-
cients called weights, in which the knowledge of an 
ANN is stored (Maged, Khalafallah, & Hassanien, 
2004). The weights are unknown values determined 
by training algorithm and training data.

In addition to inputs and weights, neurons 
include another component, called bias. Bias values 
accumulate with product inputs and their respective 
weights. The number of neurons in the input and 
output layers depends on the nature of the problem. 
The number of neurons in the input and output layer 
is equal to the number of input and output variables, 
respectively. However, the number of neurons in 

the hidden layer is determined in a trial-and-error 
approach.

The learning algorithm is a dynamic and itera-
tive process which consists of the modification of 
the network’s parameters in response to the received 
environmental signals (Moller, 1993). The goal of 
learning is to minimize the error between the desired 
output (target) and the network output (output) 
(Ebrahimabadi, Azimipour, & Bahreini, 2015). The 
learning algorithm in a FFNN is supervised. Super-
vised learning is a type of learning that takes place 
when the training instances are labeled with the cor-
rect results; in fact, the target dataset is provided 
and used to train the machine and obtain the desired 
outputs. One of the most widely-used training algo-
rithms is back-propagation. In the back-propagation 
algorithm, when each entry of the sample set is pre-
sented to the network, the network examines its out-
put response to the sample input pattern. The output 
response is then compared to the known and desired 
output and the error value is calculated. The connec-
tion weights are adjusted according to the error. The 
set of these sample patterns is repeatedly presented 
to the network until the error value is minimized 
(Guillermo, 1998). A FFN with one hidden layer and 
enough neurons in the hidden layers can fit any finite 
input-output mapping problem (Salari et al., 2005). 
In this research, therefore, this type of network is 
used to predict ocean wave energy.

Cascade-forward Neural Network (CFNN)

Cascade-forward neural networks (Scott, Leb-
iere, & Lebiere, 1990) are similar to FFNs, but 
include a connection from the input and every pre-
vious layer to the following layers. A CFNN can 
approximate any bounded continuous function with 
enough hidden neurons.

Gene Expression Programming (GEP)

A GA is one of the well-known adaptive heuristic 
search algorithms based on the evolutionary ideas of 
natural selection and genetics (Holand, 1975). In the 
conventional version, chromosomes were represent-
ed as a fixed length binary string. Genetic Program-
ming (GP) (Koza, 1992) derives from the extended 
version of GA, where chromosomes are represent-
ed as a LISP expression translated graphically into 
tree structures of different sizes. LISP (Robin, Clive, 
& Ian, 2012) is a family of computer programming 
languages based on formal functional calculus. GEP 
is a new evolutionary Artificial Intelligence (AI) 
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technique developed by Ferreira (Ferreira, 2001). 
This technique is an extension of GP and consists 
of encoded individuals as linear chromosomes of 
fixed length, represented by a tree structure of dif-
ferent sizes and shapes. In fact, the linear structure 
of chromosomes makes genetic operators such as 
recombination, mutation, and duplication constantly 
generate accurate and reliable constructs (Keshavarz 
& Mehramiri, 2015). GEP is one of the best evo-
lutionary methods for complex, non-linear model-
ing that automatically creates computer programs. 
These computer programs can take many forms, 
such as conventional mathematical models, neural 
networks, decision trees, sophisticated nonlinear 
regression models, logistic regression models, and 
so on. It combines the advantages of both GA and 
GP, and removes their limitations with two elements, 
the chromosomes and the expression trees (ETs). 
The chromosome is the encoder of the candidate 
solution, which is then translated into an ET. Linear 
chromosomes are composed of genes structurally 
organized into a head and a tail. The information is 
used to generate the overall GEP model stored in the 
head of the gene. Terminals are stored in the tail of 
the gene. The tail consists of information that can be 
used in producing subsequent GEP models (Ferreira, 
2001). In GEP, the number of genes in a chromo-
some can be one or more.

GEP carries out the following stages of solving 
a problem: 1) the process initiates (Ferreira, 2001) in 
tree form; and the fitness of each individual is eval-
uated; 3) a check is made as to whether the termi-
nation condition is satisfied or not. If it is satisfied, 
then the evolution stops and the program terminates 
with the current population displaying the favor-
able solution; if not, the best present population is 
retained; 4) the other population is chosen based on 
its performance, 5) certain modifications (mutation, 
recombination, and duplication) are made on the 
selected population so as to produce new children; 
and 6) after some of the above-mentioned operations 
have been applied, a new population is generated. 
This process is repeated for a certain number of gen-
erations or until the required accuracy is achieved 
(Ferreira, 2001). In the GEP system, the operators 
used for the genetic modification of chromosomes 
are explained in (Ferreira, 2006).

Local Distribution Based Outlier Detector (LDBOD)

Outlier detection refers to the problem of find-
ing patterns in data that do not conform to expect-
ed normal behavior. Scholars have proposed many 

definitions for an outlier but there is seemingly no 
universally accepted one. In this paper, we will take 
the definition of Grubbs (Grubbs, 1969), quoted in 
Barnett & Lewis (Barnett & Lewis, 1994): an outlier 
observation is one that appears to deviate marked-
ly from other members of the data set in which it 
occurs.

LDBOD (Zhang, Yang & Wang, 2008) is a pow-
erful outlier detection algorithm. It detects local out-
liers from the viewpoint of local distribution, which 
is characterized through three proposed measure-
ments: local-average-distance, local-density, and 
local-asymmetry-degree. Details of LDBOD are 
given below.

At the outset, it is necessary to construct a neigh-
borhood diagram among all the data points. Here 
a kNN diagram (Lee, 1982) is used. Local distribu-
tion needs to be quantified with some specific mea-
surements. p and q are some data points in the data 
set. Also, d(p, q) is representative of the distance 
between points and q (in this research, Euclidean 
distance). Moreover, Nk (p) denotes the kNN neigh-
borhood (Breunig et al., 2000). In this regard, certain 
definitions are presented below:

Definition 1. The local-average-distance of  is 
defined as

       pNq k
qpd

pN
,1  

 

.

Definition 2. Given the local neighborhood Nk (p) 
of an object p, the local-density of p is defined as 
the distance between p and its k-th neighbor, that is, 
local-density (p) = maxq∈Nk(p) d (p, q).

Definition 3. The point symmetry distance 
between object p and o is defined as the distance 
between p* and the nearest neighbor of p* in Nk (o), 
where p* is the image point of p with respect to 
object o, i.e., PSD(p, o) = minq∈Nk(o) d (p*,q).

Definition 4. The local asymmetry-degree of p 
can be defined as the weighted average of the point 
symmetry distances between the neighbors of p in 
Nk (p) and p, that is, local-asymmetry-degree

            pNq
k

k
pqqw

pN
p ,PSD1  

 

.

Also, w(q) = ed(p,q)/σ, where σ is a predefined tun-
ing parameter. There is no general guideline for the 
selection of this parameter. In this research, based 
on the nature of the data, we set it at 100 intuitively.

Definition 5. An object p is an outlier if it is labeled 
as an outlier through the 2-class clustering analysis 
performed over the Outlier Feature Vectors (OFVs) 
of the data set. Every object p can be represented as 
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a 3-dimensional feature vector of local-average-dis-
tance (p), local-density (p), local-asymmetry-degree 
(p). We refer to this feature vector as an OFV. The 
different clustering algorithms can be used for OFV 
clustering. We consider utilizing Fuzzy C-means 
(FCM) (Chiu, 1994) as our clustering algorithm 
due to its efficient computation and small storage 
requirement.

Performance evaluation

To evaluate the performance and accuracy of our 
intended models in terms of the measured and pre-
dicted values, RMSE and R were employed, accord-
ing to the following equations:
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Here, n represents the total number of instances, 
while Ti and Oi are representative of experimental 
and predicted values using models, respectively. 
Moreover, T  

 
 and O  

 
 are the average of the men-

tioned data.

Data sets

The historical meteorological and wave data were 
taken from the NDBC (http://www.ndbc.noaa.gov). 
Two standard meteorological data stations were used 
for our modeling. Table 2 shows the main charac-
teristics of the two buoys considered and dataset 
locations are illustrated in Figure 1. All historical 
data were collected in the year 2015, and a subset 
in the year 2014. In order to apply the DMMs, it 
was necessary to divide the data into training and 
testing sets. Herein, data for one complete year from 
station 44009 was selected for the training set, and 
a random subset data from station 42058 was used 
for the test set. Before modeling, missing values and 
outliers must be detected and then removed from 
data sets. This process increases the accuracy of the 
created models. Missing values are easily detectable, 
but it is difficult to detect outliers. In this research, 
first the missing values were removed, and then out-
liers were detected and removed. To implement the 
LDBOD method, we had to determine the value of 
parameter k (number of neighbors). However, how 
to select this parameter depends on the nature of the 
data and can be determined through trial and error. 

In the current study, in general and for a good inter-
val confidence, k = 200 was selected for all the data 
sets. Table 3 shows the number of detected outliers 
after removing missing values in the studied stations. 
After cleaning the data sets, the total number of 
training and test data obtained were 3884 and 2488, 
respectively. The details of the predictive variables 
in all the studied stations are displayed in Table 4.

Table 2. Geographic coordinates and buoy description 
(NDBC site1)

Characteristics
Station 44009 Station 42058
(38°27’40” N  
74°42’9” W)

(14°55’23” N  
74°55’4” W)

Site elevation sea level sea level
Air temperature  
height

4 m above site 
elevation

4 m above site 
elevation

Anemometer  
height

5 m above site 
elevation

5 m above site 
elevation

Barometer  
elevation

sea level sea level

Sea temperature  
depth

0.6 m below  
water line

0.6 m below  
water line

Water depth 30.5 m 4161 m
Watch circle radius 63.1 m 4344.3 m

 

 

St. 44009

St. 42058

Figure 1. Buoys considered in this study

Table 3. Detected outliers in the studied stations

Station  
ID

Number  
of samples

Number of detected  
outliers

44009 3934 50
42058 2509 21

Wave energy flux can be obtained using the fol-
lowing deep-water expression (Fernández et al., 
2015; Cornejo-Bueno et al., 2016; Sierra et al., 
2016):
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where, P is the wave energy flux (or power density 
per meter of wave crest) in kW/m. Hs is the signifi-
cant wave height (i.e., defined as the average of the 
highest one-third of waves). The sea is composed of 
many random waves of different lengths and heights. 
It is not possible to consider all these waves at the 
same time for design or research purposes. For this 
reason, a wave that represents all of them will be 
considered, this being the significant wave height. Te 
is the energy period. The parameters ρ and g are den-
sity of seawater, which is assumed to be 1025 kg/m3, 
and gravitational acceleration, respectively. As sug-
gested by (Boronowski et al., 2010), a conservative 
value of Te = 0.9Tp was used to assess the wave ener-
gy resource, where Tp is peak period.

Results and discussion

In this section the results of FFNN, CFNN, 
and GEP DMMs on the data sets is presented. All 
methods were implemented in MATLAB software, 
with the exception of the GEP method, which was 
modeled on GeneXproTools 5.0 software (Ferrei-
ra, 2001). In all models, input parameters are wind 
speed, atmospheric pressure, air temperature, and 
water temperature with output wave energy flux (see 
Eq. (3)).

Feed-forward (FFN) and Cascade 
Neural Network (CNN)

Since, according to Bishop’s (Bishop, 1995) 
study, more than one hidden layer is often unneces-
sary, our architectures have only one hidden layer. All 
the used networks are trained using a back-propaga-
tion algorithm with gradient descent and momentum 
terms. A neural network must be learned by network 
parameters before utilization. The characteristics of 
the ANNs employed in this study are presented in 
Table 5, while Figure 2 represents the schematic of 
defined FFNs and CNNs. To avoid over-fitting, each 
dataset was randomly split into three sets: 70% for 

model training (to compute the gradient and updat-
ing of the network parameters, such as weights and 
biases); 15% for model testing; and 15% for validat-
ing. The model weights were randomly initialized. 

A neural network is a random process and in each 
run, may produce different results under the same 
conditions. Therefore, different networks were cre-
ated to achieve the best model. To create different 
networks, the numbers of hidden neurons varied 
from five to 15, and other conditions are considered 
as being the same. For each neuron, 30 networks, 
with a total of 330 networks, were created, and the 
best result, with the least RMSE and maximum R2, 
is shown in dark gray in Table 6. For both networks, 
the best result was obtained for 15 neurons. 

Table 4. Predictive variables statistics corresponding to all studied stations

Predictive variable Unit
Max Min Mean Std

ST. 
44009

ST. 
42058

ST. 
44009

ST. 
42058

ST. 
44009

ST. 
42058

ST. 
44009

ST. 
42058

Wind speed (WSPD) [m/s] 18.70 15.10 0.00 0.30 6.26 8.12 3.30 2.02
Significant wave height (WVHT) [m] 6.11 3.92 0.27 0.43 1.21 1.46 0.80 0.48
Atmospheric pressure (PRES) [hPa] 1042.4 1017.70 1000.4 1006.70 1018.46 1012.12 6.90 1.91
Air temperature (ATMP) [°C] 27.70 29.70 2.90 24.70 18.64 27.91 5.70 1.03
Water temperature (WTMP) [°C] 27.90 30.30 12.00 26.00 19.73 28.20 5.07 0.98

Table 5. The characteristics of selected neural networks

Training subset 70% of dataset
Validation subset 15% of dataset
Test subset 15% of dataset
Number of input layer neurons 4
Number of output layer neurons 1
Number of hidden layer neurons Varied from 5 to 15
Hidden layer activation function Hyperbolic tangent
Output layer activation function Linear
Training algorithm Levenberg-Marquardt
Maximum number of training epochs 1000

 
FFNN

 
CFNN

Figure 2. Schematic of defined neural networks of a) FFNN 
and b) CFNN
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In general, for training data, the FFNN perfor-
mance was better than that of the CFNN, although 
the difference is negligible. It was also observed that, 
with an increase in the number of neurons, the accu-
racy of the models did not significantly increase. 
The regression plot and error histogram for the best 
obtained models by a FFNN and CFNN are present-
ed in Figures 3 and 4, respectively. As is clear from 
Figures 3 and 4, the accuracy of the resulting models 
is acceptable, because in Figure 3 most data are dis-
tributed around the bisector exact model line. This 
means that the created networks were able to esti-
mate the nonlinear relationship between the mete-
orological and wave energy flux with reasonable 
accuracy.

Table 6. Results of neural network implementation

Number  
of  

neurons

FFNN CFNN
RMSE 
(kW/m) R2 RMSE 

(kW/m) R2

5 5.30 0.89 5.34 0.89
6 5.01 0.90 5.03 0.90
7 4.90 0.91 5.16 0.90
8 4.64 0.92 4.86 0.91
9 4.67 0.92 4.90 0.91
10 4.68 0.92 4.47 0.92
11 4.48 0.92 4.70 0.91
12 4.53 0.92 4.62 0.92
13 4.29 0.93 4.43 0.92
14 4.47 0.92 4.41 0.92
15 4.24 0.93 4.37 0.93

  
 FFNN CFNN 

 

0 50 100 150

0

20

40

60

80

100

120

140

160

Measured (kW/m)

P
re

di
ct

ed
 (k

W
/m

)

Training: R=0.96648

 

 
Data
Fit
Y = T

0 50 100 150

0

20

40

60

80

100

120

140

160

Measured (kW/m)

P
re

di
ct

ed

Validation: R=0.95433

 

 
Data
Fit
Y = T

0 50 100 150

0

20

40

60

80

100

120

140

160

Measured (kW/m)

P
re

di
ct

ed
 (k

W
/m

)

Test: R=0.96947

 

 
Data
Fit
Y = T

0 50 100 150

0

20

40

60

80

100

120

140

160

Measured (kW/m)

P
re

di
ct

ed
 (k

W
/m

)

All: R=0.96445

 

 
Data
Fit
Y = T

50 100 150

20

40

60

80

100

120

140

160

Measured (kW/m)

P
re

di
ct

ed
 (k

W
/m

)

Training: R=0.96607

 

 
Data
Fit
Y = T

50 100 150

20

40

60

80

100

120

140

160

Measured (kW/m)

P
re

di
ct

ed
 (k

W
/m

)

Validation: R=0.9614

 

 
Data
Fit
Y = T

50 100 150

20

40

60

80

100

120

140

160

Measured (kW/m)

P
re

di
ct

ed
 (k

W
/m

)

Test: R=0.96745

 

 
Data
Fit
Y = T

50 100 150

20

40

60

80

100

120

140

160

Measured (kW/m)

P
re

di
ct

ed
 (k

W
/m

)

All: R=0.96505

 

 
Data
Fit
Y = T

   
 FFNN CFNN 

 

0

500

1000

1500

2000

2500

Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Measured - Predicted (kW/m)

 

 

-2
8.

2
-2

4.
21

-2
0.

21
-1

6.
22

-1
2.

23
-8

.2
35

-4
.2

42
-0

.2
48

5
3.

74
5

7.
73

8
11

.7
3

15
.7

2
19

.7
2

23
.7

1
27

.7
31

.7
35

.6
9

39
.6

8
43

.6
8

47
.6

7

Training
Validation
Test
Zero Error

0

500

1000

1500

2000

Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Measured - Predicted (kW/m)

 

 

-3
5.

64
-3

1.
04

-2
6.

44
-2

1.
84

-1
7.

24
-1

2.
64

-8
.0

35
-3

.4
34

1.
16

7
5.

76
8

10
.3

7
14

.9
7

19
.5

7
24

.1
7

28
.7

7
33

.3
7

37
.9

7
42

.5
8

47
.1

8
51

.7
8

Training
Validation
Test
Zero Error

Figure 4. Error histogram for the best obtained model by FFNN and CFNN

Figure 3. The measured wave energy flux versus predicted values for the best obtained model by FFNN and CFNN
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Gene Expression Programming (GEP)

In GEP modeling, parameters should be defined. 
These include fitness function, the set of terminals 
T, and the set of functions F to create the chromo-
somes, chromosomal architecture, i.e., the length of 
the head and the number of genes and chromosomes, 
linking function, set of genetic operators, and their 
rates. There is no complete information regarding 
how to choose appropriate GEP parameters. Param-
eter values are usually determined by trial and error. 
The parameters used in the GEP models are given 
in Table 7; other parameters were set to default val-
ues in GeneXproTools 5.0 software. In our modeling, 
70% of the training data set were implemented for 
the training phase, and the rest of the data were used 
for the test phase. The results of the GEP implemen-
tation on the training data are provided in Table 8. 
The accuracy of all models is almost the same over-
all, but their results may be different as regards the 
test data. In general, the performance of model 1 is 
better than other models. The regression plot and 
error histogram of training data for model 1 is pre-
sented in Figures 5 and 6.

Comparison between models

After creating models, their ability to estimate wave 
energy flux must be measured in other than training 
data. A model providing a more accurate estimation 
of new data has more functionality. For this purpose, 

Table 7. Selected parameters for the GEP models

GEP parameters Model 1 Model 2 Model 3 Model 4
Function set +, _, *, /, ^, Exp, Ln, 

Log, Sqrt
+, _, *, /, ^ +, _, *, /, Exp, Ln,  

Sin, Cos
+, _, *, /, ^, Exp, Ln,  
Log, Sqrt, Sin, Cos,

Terminal set WSPD, PRES,  
ATMP, WTMP

WSPD, PRES,  
ATMP, WTMP

WSPD, PRES,  
ATMP, WTMP

WSPD, PRES,  
ATMP, WTMP

Number of chromosomes 25 25 30 28
Number of genes 6 6 7 5

Head size 8 8 8 6
Linking function Addition Addition Addition Addition
Mutation rate 0.00138 0.00138 0.02 0.1
Gene recombination rate 0.00277 0.00277 0.003 0.1
One-point recombination rate 0.00277 0.00277 0.30 0.2
Two-point recombination rate 0.00277 0.00277 0.30 0.2
Gene transposition rate 0.00277 0.00277 0.00277 0.00277
Inversion rate 0.00546 0.00546 0.00546 0.00546
IS transportation rate 0.00546 0.00546 0.00546 0.00546
RIS transportation rate 0.00546 0.00546 0.00546 0.00546
Fitness function error type RMSE RMSE RMSE RMSE
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in Table 8, the results of the models’ implementation 
on the test data are presented. In general, the results 
of all three methods are appropriate as regards the 
test data. Models 2 and 3 using the GEP method 
performed poorly in estimating the wave energy flux 
on the test data, while FFNN performed best of all 
the four created models. The regression plots of the 
FFNN, CFNN, and GEP model 1 on the test data 
are presented in Figure 7. Also as regards the test 

data, the sorted plot of wave energy flux estimation 
comparison between neural networks and GEP 
for the best obtained models is shown in Figure 8. 
According to this figure, in general the total amount 
of energy estimated using FFNs and CNNs is lower 
than the actual values, and the energy estimated 
using GPE model 1 is higher than the actual values. 
The overall results for all three methods used in this 
study are presented in Table 8, from which it can be 
seen that the FFNN method performs better than the 
other methods.

Conclusions

For wave energy calculation, spectral wave mea-
surements are required. In some cases, it is not pos-
sible to measure these values due to lack of labora-
tory equipment, financial resources, or other items. 
In the absence of spectral wave measurements, the 
current research studied wave energy flux estima-
tion by using historical meteorological data. There 
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Figure 8. Sorted plot of wave energy flux estimation comparison between all models for the test data

Figure 7. The measured wave energy flux versus predicted values on the test data for FFNN, CFNN, and GEP model 1

Table 8. Overall comparison of different methods

Method
Training Data Test Data

RMSR 
(kW/m) R2 RMSR 

(kW/m) R2

FFNN 4.25 0.93 3.79 0.88
CFNN 4.31 0.93 6.02 0.82
GEP Model 1 7.30 0.79 6.94 0.85
GEP Model 2 7.68 0.77 36.35 0.34
GEP Model 3 0.48 0.77 1.49 0.13
GEP Model 4 0.53 0.75 4.30 0.66
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are a variety of DMMs for the prediction of prob-
lems. We used three different well-known methods 
of FFNN, CFNN, and GEP to estimate wave energy 
flux by using meteorological data. In all created mod-
els, wind speed, air temperature, and sea temperature 
were considered as input parameters. Wave energy 
flux was also selected as an output parameter. The 
accuracy of the mentioned methods was examined 
using the performance evaluation criteria. As a result 
of this study, it can be said that the performance of 
all discussed DMMs is satisfactory, but that among 
them, FFNN could estimate wave energy flux with a 
more acceptable accuracy than other methods. The 
main aim of this paper was to find the relationship 
between wave energy flux and the meteorological 
parameters, and the results of the present work have 
shown that there is a good correlation between these 
variables. In fact, it is possible to estimate wave ener-
gy flux in the absence of wave records in the differ-
ent areas. It should also be noted that there are other 
useful methods, for example numerical models, to 
assess wave energy. Finally, it is recommended that 
future studies of wave energy prediction should con-
sider the combination of DMMs and numerical mod-
els to achieve more efficient results.
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