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Abstract: Multiobjective fractional variational problem is con-
sidered and sufficient optimality conditions, characterizing efficiency
of higher order, are obtained under the assumptions of (F, ρ)−invexity
of higher order on the functionals involved. Parametric higher order
dual of the above stated problem is proposed. Duality theorems are
proved to relate efficient solutions of higher order for primal and its
dual problem using generalized class of functionals.
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1. Introduction

The fractional variational programming problem is a problem of finding a piece-
wise smooth vector function in a way to optimize the ratio of two function-
als, subject to differential inequality and boundary conditions (see Mishra and
Mukherjee, 1994; Mititelu and Stancu-Minasian, 2009; Patel, 2005; Stancu
-Minasian, 1997; Stancu-Minasian and Mititelu, 2008, 2011, 2012; Stancu-
Minasian and Tigan, 2000). Due to their ratio structure, these problems have
applications in various fields, like economics, information theory, engineering,
heat exchange networking, and numerical analysis. In practical situations, frac-
tional variational problems with more than a single objective function occur, so
it is important to study the multiobjective fractional variational problem, which
is stated below:

(P)Minimize

(

∫ b

a
f1(t, x(t), ẋ(t))dt

∫ b

a
k1(t, x(t), ẋ(t))dt

,

∫ b

a
f2(t, x(t), ẋ(t))dt

∫ b

a
k2(t, x(t), ẋ(t))dt

, . . . ,

∫ b

a
f r(t, x(t), ẋ(t))dt

∫ b

a
kr(t, x(t), ẋ(t))dt

)
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subject to

gi(t, x(t), ẋ(t)) ≤ 0, t ∈ I, i = 1, 2, . . . , p (1)

x(a) = α, x(b) = β, x ∈ X (2)

where
(i) I = [a, b], X is the space of piecewise smooth state functions x : I → R

n

with the derivative ẋ, equipped with the norm ‖x‖ = ‖x‖
∞

+ ‖Dx‖
∞
,

where the differential operator D is given by
u = Dx ⇔ x(t) = x(a) +

∫ t

a
u(s)ds. Therefore, D = d

dt
except at disconti-

nuities;
(ii) f i : I × R

n × R
n → R, ki : I × R

n × R
n → R, i = 1, 2, . . . , r and

gi : I × R
n × R

n → R, i = 1, 2, . . . , p are continuously differentiable
functions with respect to each of their arguments;

(iii)
∫ b

a
f i(t, x(t), ẋ(t))dt ≥ 0 and

∫ b

a
ki(t, x(t), ẋ(t))dt > 0 for all i ∈ {1, 2, . . . , r}

and for all x ∈ X.

The concept of optimal solution does not fit in multiobjective(vector) opti-
mization problems as it becomes very difficult to find a single solution, which
optimizes simultaneously each of the objectives. Considerable importance is
given to the situation, where the solution for the vector optimization problem
is described in terms of weak efficiency/efficiency/proper efficiency. Recently,
much attention has been given to other types of solution concepts, one of them
being higher order minimizer or minimizer of order m. This concept was intro-
duced by Auslender (see Auslender, 1984) and Ward (see Ward, 1994). Jiménez
(see Jiménez, 2002) extended the idea of Ward to define the notion of strict local
efficient solution of order m for the vector optimization problem. Bhatia (see
Bhatia, 2008) extended this idea further and defined the global strict minimizer
of order m for the multiobjective optimization problem. Kumar and Sharma
(2016, 2017) studied this solution concept for variational problem (fractional
and non fractional case). These solutions are more stable than efficient solu-
tions. The stablity is understood in the sense that under small perturbations of
problem data these solutions preserve their type.

Using efficiency of higher order as the optimality criteria, sufficient optimal-
ity conditions and higher order duality results for a multiobjective fractional
variational problem under the assumption of generalized invexity are established
in this paper. The notion of efficiency of higher order used in this paper leads to
stronger results, whereas generalized invexity broadens the class of functionals
involved.

The paper is organized as follows: In Section 2 some basic definitions and
preliminaries are given. Section 3 deals with the necessary optimality conditions
for multiobjective fractional variational problem (P) using the concept of effi-
ciency of higher order. Section 4 is devoted to sufficient optimality conditions
for the problem undertaken. We propose higher order dual for (P), for which
duality results are obtained under generalized invexity assumptions in Section
5.
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2. Solution concepts

For any x = (x1, x2, . . . , xn)
T
, y = (y1, y2, . . . , yn)

T
∈ R

n.

(i) x = y ⇔ xi = yi for all i = 1, 2, . . . , n.
(ii) x < y ⇔ xi < yi for all i = 1, 2, . . . , n.
(iii) x ≦ y ⇔ xi ≦ yi for all i = 1, 2, . . . , n.
(iv) x ≤ y ⇔ x ≦ y and x 6= y.

R
n
+ = {(x1, x2, . . . , xn)T ∈ R

n|xi ≧ 0, i = 1, 2, . . . , n} and intRn
+ de-

notes the interior of Rn
+, that is, intR

n
+ = {(x1, x2, . . . , xn)T ∈ R

n|xi > 0, i =
1, 2, . . . , n}.

For notational convenience x(t) will be written as x. Let X0 be the set of
all feasible solutions of (P), that is, X0 = {x ∈ X |gi(t, x, ẋ) ≤ 0, t ∈ I, i =
1, . . . , r, x(a) = α, x(b) = β}.

Definition 1 A point x̄ ∈ X0 is said to be an efficient solution for (P) if there
is no other x ∈ X0 such that

∫ b

a
f i(t, x, ẋ)dt

∫ b

a
ki(t, x, ẋ)dt

≤

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

,

for all i ∈ {1, 2, . . . , r} with strict inequality for at least one i.

Definition 2 A point x̄ ∈ X0 is said to be a weak efficient solution for (P) if
there is no other x ∈ X0 such that

∫ b

a
f i(t, x, ẋ)dt

∫ b

a
ki(t, x, ẋ)dt

<

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

, for all i ∈ {1, 2, . . . , r}.

Let m ≥ 1 be an integer and θ : I × X × X → R
n be a piecewise smooth

function.

Definition 3 A point x̄ ∈ X0 is said to be an efficient solution of order m

with respect to θ for (P) if there exist c = (c1, c2, . . . , cr) ∈ intRr
+ and d =

(d1, d2, . . . , dr) ∈ intRr
+ such that for no other x ∈ X0

∫ b

a
{f i(t, x, ẋ)− ci‖θ(t, x, x̄)‖m}dt

∫ b

a
{ki(t, x, ẋ) + di‖θ(t, x, x̄)‖m}dt

≤

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

,

for all i ∈ {1, 2, . . . , r} with strict inequality for at least one i.

Definition 4 A point x̄ ∈ X0 is said to be a weak efficient solution of order
m with respect to θ for (P) if there exist c = (c1, c2, . . . , cr) ∈ intRr

+ and
d = (d1, d2, . . . , dr) ∈ intRr

+ such that for no other x ∈ X0

∫ b

a
{f i(t, x, ẋ)− ci‖θ(t, x, x̄)‖m}dt

∫ b

a
{ki(t, x, ẋ) + di‖θ(t, x, x̄)‖m}dt

<

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

, for all i ∈ {1, 2, . . . , r}.
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Remark 1 Efficient solution of higher order and weak efficient solution of
higher order are more stable than efficient and weak efficient solutions. By
stability, we mean that they still remain the same type of solutions under small
perturbations of the problem data. For details a reader is referred to Ginchev et
al. (2005).

The main objective of this paper is to study these solution concepts through
optimality conditions and duality results. Let us denote the partial derivative
of f i, i = 1, 2, . . . , r with respect to t, x and ẋ by f i

t , f
i
x, f

i
ẋ, respectively.

Analogously, we write the partial derivative of ki, i = 1, 2, . . . , r and gi, i =
1, 2, . . . , p.

3. Necessary optimality conditions

Necessary optimality conditions are important, because these conditions lay
down the foundation for many computational techniques in optimization prob-
lems, as they indicate when a feasible point is not an efficient solution of higher
order. At the same time, these conditions are useful in the development of
numerical algorithms for solving certain optimization problems. Further, these
conditions are also the basis for the development of duality theory, on which
there exists an extensive literature and a substantial use of which has been made
in theoretical as well as computational applications in many diverse fields.

Consider the following parametric multiobjective variational problem (Pv)

Minimize
(

∫ b

a

{f1(t, x, ẋ)−v1k1(t, x, ẋ)}dt, . . . ,

∫ b

a

{f r(t, x, ẋ)−vrkr(t, x, ẋ)}dt
)

subject to

g(t, x, ẋ) = (g1(t, x, ẋ), g2(t, x, ẋ), . . . , gp(t, x, ẋ)) ≦ 0, t ∈ I

x(a) = α, x(b) = β

v = (v1, v2, . . . , vr) ∈ R
r
+.

Lemma 1 If x̄ is an efficient solution of order m with respect to θ for (P) then
there exists v̄ = (v̄1, v̄2, . . . , v̄r) ∈ R

r
+ such that x̄ is an efficient solution of order

m with respect to θ for (Pv̄).

proof Let x̄ be an efficient solution of order m with respect to θ for (P).

Take v̄i =
∫

b

a
fi(t,x̄, ˙̄x)dt

∫
b

a
ki(t,x̄, ˙̄x)dt

, i = 1, 2, . . . , r.

If possible, suppose that x̄ is not an efficient solution of order m with respect
to θ for (Pv̄). Then, for any ρ = (ρ1, ρ2, . . . , ρr) ∈ intRr

+, there exists x̂ ∈ X0

such that

∫ b

a

{f i(t, x̂, ˙̂x)−v̄iki(t, x̂, ˙̂x)}dt ≤

∫ b

a

{f i(t, x̄, ˙̄x)−v̄iki(t, x̄, ˙̄x)+ρi‖θ(t, x̂, x̄)‖m}dt,
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for all i ∈ {1, 2, ..., r} with strict inequality for at least one i.
That is,

∫ b

a

{f i(t, x̂, ˙̂x)− v̄iki(t, x̂, ˙̂x)}dt ≤ ρi
∫ b

a

‖θ(t, x̂, x̄)‖mdt,

for all i ∈ {1, 2, ..., r} with strict inequality for at least one i.
This means that

∫ b

a
f i(t, x̂, ˙̂x)dt

∫ b

a
ki(t, x̂, ˙̂x)dt

≤

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

+
ρi
∫ b

a
‖θ(t, x̂, x̄)‖mdt

∫ b

a
ki(t, x̂, ˙̂x)dt

, (3)

for all i ∈ {1, 2, ..., r}, with strict inequality for at least one i.

Case (i)
If ‖θ(t, x̂, x̄)‖m = 0, then (3) becomes

∫ b

a
f i(t, x̂, ˙̂x)dt

∫ b

a
ki(t, x̂, ˙̂x)dt

≤

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

,

for all i ∈ {1, 2, ..., r} with strict inequality for at least one i.

Then, for any c = (c1, c2, . . . , cr) ∈ intRr
+ and d = (d1, d2, . . . , dr) ∈ intRr

+,

there exists x̂ ∈ X0 such that

∫ b

a
{f i(t, x̂, ˙̂x)− ci‖θ(t, x̂, x̄)‖m}dt

∫ b

a
{ki(t, x̂, ˙̂x) + di‖θ(t, x̂, x̄)‖m}dt

≤

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

,

for all i ∈ {1, 2, . . . , r} with strict inequality for at least one i, which contradicts
the fact that x̄ is an efficient solution of order m with respect to θ for (P).

Case (ii)
If ‖θ(t, x̂, x̄)‖m 6= 0, then we apply the following reasoning.

For any c = (c1, c2, . . . , cr) ∈ intRr
+ and d = (d1, d2, . . . , dr) ∈ intRr

+, define

ρi =
ci
∫ b

a
ki(t, x̂, ˙̂x)dt+ di

∫ b

a
f i(t, x̂, ˙̂x)dt

∫ b

a
ki(t, x̂, ˙̂x)dt+ di

∫ b

a
‖θ(t, x̂, x̄)‖mdt

, i = 1, 2, . . . , r.

Substituting this in (3) yields

∫ b

a
{f i(t, x̂, ˙̂x)− ci‖θ(t, x̂, x̄)‖m}dt

∫ b

a
{ki(t, x̂, ˙̂x) + di‖θ(t, x̂, x̄)‖m}dt

≤

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

,

for all i ∈ {1, 2, . . . , r} with strict inequality for at least one i.
We arrive at a contradiction to the fact that x̄ is an efficient solution of order

m with respect to θ for (P). Hence, the result follows. �
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Theorem 1 (Necessary optimality conditions) Let x̄ be an efficient solution of
order m with respect to θ for (P). Then, there exist λ̄ = (λ̄1, . . . , λ̄r) ∈ R

r, v̄ =
(v̄1, v̄2, . . . , v̄r) ∈ R

r
+ and a piecewise smooth function ȳ : I → R

p such that

r
∑

i=1

λ̄i(f i
x̄(t)− v̄ikix̄(t)) + ȳ(t)T gx̄(t) =

d

dt

[ r
∑

i=1

λ̄i(f i
˙̄x(t)− v̄iki˙̄x(t)) + ȳ(t)T g ˙̄x(t)

]

, t ∈ I, (4)

∫ b

a

ȳ(t)T g(t, x̄, ˙̄x)dt = 0, (5)

λ̄ ≧ 0, ȳ(t) ≧ 0, t ∈ I, v̄i =

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

, i = 1, 2, . . . , r. (6)

Proof Let x̄ be an efficient solution of order m with respect to θ for (P). By
Lemma 3.1., there exists v̄ = (v̄1, v̄2, . . . , v̄r) such that x̄ is an efficient solution
of order m with respect to θ for (Pv̄). Since every efficient solution of order m
with respect to θ for (Pv̄) is an efficient solution for (Pv̄), proof follows directly
by writing necessary optimality conditions for (Pv̄) (see Mititelu and Stancu-
Minasian, 2009).

The above conditions are only necessary, but not sufficient, with the following
example validating this fact:

Example 1

(P1) Minimize

(

∫ 1

0 {x(t)(x(t) − t(t− 1))}2dt
∫ 1

0
{x2(t) + 1}dt

,

∫ 1

0 {ẋ(t)(ẋ(t)− 2t+ 1)}2dt
∫ 1

0
{ẋ2(t) + 1}dt

)

subject to

x(t) ≤ 0, t ∈ I = [0, 1],

x(0) = 0, x(1) = 0.

x̄(t) = 0, t ∈ I is a feasible solution, which satisfies (4), (5) and (6) for λ̄ =
(1, 0)T , v̄ = (0, 0)T and ȳ(t) = 0, t ∈ I. But x̄ is not an efficient solution of
order m for (P1) with respect to θ, where

θ(t, x, x̄) =

{

x(t)−x̄(t)
t(t−1) 0 < t < 1

1 t = 0, 1.

Since for each c = (c1, c2) ∈ intR2
+ and d = (d1, d2) ∈ intR2

+, we can take
x̂(t) = (t2 − t) ∈ X0, t ∈ I, then
∫ b

a
{f1(t, x, ẋ)− c1‖θ(t, x, x̄)‖m}dt

∫ b

a
{k1(t, x, ẋ) + d1‖θ(t, x, x̄)‖m}dt

=
−105c1

113 + 105d1
< 0 =

∫ b

a
f1(t, x̄, ˙̄x)dt

∫ b

a
k1(t, x̄, ˙̄x)dt

,
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∫ b

a
{f2(t, x, ẋ)− c2‖θ(t, x, x̄)‖m}dt

∫ b

a
{k2(t, x, ẋ) + d2‖θ(t, x, x̄)‖m}dt

=
−3c2

4 + 3d2
< 0 =

∫ b

a
f2(t, x̄, ˙̄x)dt

∫ b

a
k2(t, x̄, ˙̄x)dt

.

Definition 5 x̄ ∈ X0 is said to be a normal efficient solution of order m with
respect to θ for (P) if it is an efficient solution of order m with respect to θ for
(P) and λ̄ 6= 0.

4. Sufficient optimality conditions

In order to proceed towards sufficient optimality conditions, we have to impose
certain conditions on the functionals involved. The notion of (F, ρ)−invexity of
higher order, introduced in this paper, serves this purpose.

Let Φ : X → R, defined by Φ(x) =
∫ b

a
φ(t, x, ẋ)dt, be Fréchet differentiable,

where φ(t, x, ẋ) is a scalar function with continuous derivatives up to and in-
cluding second order with respect to each of its arguments.

Let there exist a real number ρ and a functional F : I×R
n×R

n×R
n×R

n×
R

n → R such that F (t, x, ẋ, x̄, ˙̄x, ·) is sublinear on R
n, i.e. for any x(t), x̄(t) ∈ R

n

F (t, x, ẋ, x̄, ˙̄x, ξ1 + ξ2) ≤ F (t, x, ẋ, x̄, ˙̄x, ξ1) + F (t, x, ẋ, x̄, ˙̄x, ξ2),

for any ξ1, ξ2 ∈ R
n, (7)

F (t, x, ẋ, x̄, ˙̄x, γξ) = γF (t, x, ẋ, x̄, ˙̄x, ξ), for any γ ∈ R+ and ξ ∈ R
n. (8)

It is quite evident from (8) that

F (t, x, ẋ, x̄, ˙̄x, 0) = 0. (9)

For the sake of convenience, φx(t) represents φx(t, x(t), ẋ(t)) and φẋ(t) repre-
sents φẋ(t, x(t), ẋ(t)).

Definition 6 A functional Φ(x) is said to be (F, ρ)−invex of order m at x̄ ∈ X

with respect to θ if

Φ(x)− Φ(x̄) ≥

∫ b

a

{F (t, x, ẋ, x̄, ˙̄x, φx̄(t)−
d

dt
[φ ˙̄x(t)]) + ρ‖θ(t, x, x̄)‖m}dt,

for all x ∈ X.

Definition 7 A functional Φ(x) is said to be (F, ρ)-pseudoinvex type 2 of order
m at x̄ ∈ X with respect to θ if

∫ b

a

{F (t, x, ẋ, x̄, ˙̄x, φx̄(t)−
d

dt
[φ ˙̄x(t)])}dt ≥ 0 ⇒ Φ(x) ≥

Φ(x̄) + ρ

∫ b

a

{‖θ(t, x, x̄)‖m}dt, for all x ∈ X.
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Definition 8 A functional Φ(x) is said to be (F, ρ)-quasiinvex type 1 of order
m at x̄ ∈ X with respect to θ if

Φ(x) ≤ Φ(x̄) ⇒

∫ b

a

{F (t, x, ẋ, x̄, ˙̄x, φx̄(t)−
d

dt
[φ ˙̄x(t)]) + ρ‖θ(t, x, x̄)‖m}dt ≤ 0,

for all x ∈ X.

Definition 9 A functional Φ(x) is said to be (F, ρ)-quasiinvex type 2 of order
m at x̄ ∈ X with respect to θ if

Φ(x) ≤ Φ(x̄) + ρ

∫ b

a

{‖θ(t, x, x̄)‖m}dt ⇒

∫ b

a

{F (t, x, ẋ, x̄, ˙̄x, φx̄(t)−
d

dt
[φ ˙̄x(t)])}dt ≤ 0, for all x ∈ X.

Definition 10 A functional Φ(x) is said to be strictly (F, ρ)-pseudoinvex type
2 of order m at x̄ ∈ X with respect to θ if

∫ b

a

{F (t, x, ẋ, x̄, ˙̄x, φx̄(t)−
d

dt
[φ ˙̄x(t)])}dt ≥ 0 ⇒

Φ(x) > Φ(x̄) + ρ

∫ b

a

{‖θ(t, x, x̄)‖m}dt, for all x ∈ X \ {x̄}.

Definition 11 A functional Φ(x) is said to be strictly (F, ρ)-quasiinvex type 1
of order m at x̄ ∈ X with respect to θ if

Φ(x) ≤ Φ(x̄) ⇒

∫ b

a

{F (t, x, ẋ, x̄, ˙̄x, φx̄(t)−
d

dt
[φ ˙̄x(t)]) + ρ‖θ(t, x, x̄)‖m}dt < 0,

for all x ∈ X \ {x̄}.

Theorem 2 (Sufficient optimality conditions) Let x̄ ∈ X0 and suppose that
there exist λ̄ = (λ̄1, . . . , λ̄r) ∈ R

r, v̄ = (v̄1, v̄2, . . . , v̄r) ∈ R
r
+ and a piecewise

smooth function ȳ : I → R
p such that conditions (4), (5) and (6) are satisfied.

Let us write θi(x) =
∫ b

a
{f i(t, x, ẋ) − v̄iki(t, x, ẋ)}dt, i = 1, 2, . . . , r and G(x) =

∫ b

a
{ȳ(t)T g(t, x, ẋ)dt. Further, if any one of the following conditions holds:
(a) θi(x), for i = 1, 2, . . . , r are strictly (F, ρi)-pseudoinvex type 2 functionals

of order m at x̄ with respect to η and θ, and G(x) is (F, ρ′)-quasiinvex type 1
functional of order m at x̄ with respect to η and θ, where ρ′, ρi ∈ int R+, for i =
1, 2, . . . , r.

(b) θi(x), for i = 1, 2, . . . , r are (F, ρi)-quasiinvex type 2 functionals of order
m at x̄ with respect to η and θ, and G(x) is strictly (F, ρ′)-quasiinvex type 1
functional of order m at x̄ with respect to η and θ, where ρ′, ρi ∈ intR+, for i =
1, 2, . . . , r.

Then x̄ is an efficient solution of order m with respect to θ for (P).
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Proof (a) Suppose x̄ is not an efficient solution of orderm with respect to θ for
(P). Then, for any c = (c1, c2, . . . , cr) ∈ intRr

+ and d = (d1, d2, . . . , dr) ∈ intRr
+,

there exists x̂ ∈ X0 such that

∫ b

a
{f i(t, x̂, ˙̂x)− ci‖θ(t, x̂, x̄)‖m}dt

∫ b

a
{ki(t, x̂, ˙̂x)dt+ di‖θ(t, x̂, x̄)‖m}dt

≤

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

= v̄i,

for all i ∈ {1, 2, . . . , r} with strict inequality for at least one i.

That is
∫ b

a

{f i(t, x̂, ˙̂x)− v̄iki(t, x̂, ˙̂x)}dt ≤ (ci + div̄i)

∫ b

a

‖θ(t, x̂, x̄)‖mdt,

for all i ∈ {1, 2, . . . , r} with strict inequality for at least one i.

Choose ρi = ci + div̄i, for i = 1, 2, ..., r. The above inequalities, along with
(6), imply

∫ b

a

{f i(t, x̂, ˙̂x)−v̄iki(t, x̂, ˙̂x)}dt ≤

∫ b

a

{f i(t, x̄, ˙̄x)−v̄iki(t, x̄, ˙̄x)+ρi‖θ(t, x̂, x̄)‖m}dt,

for all i ∈ {1, 2, . . . , r} with strict inequality for at least one i.

Since θi(x), for i = 1, 2, . . . , r, are strictly (F, ρi)-pseudoinvex type 2 func-
tionals of order m at x̄ with respect to η and θ, we obtain

∫ b

a

{F (t, x̂, ˙̂x, x̄, ˙̄x, f i
x̄(t)− v̄ikix̄(t)−

d

dt
[f i

˙̄x(t)− v̄iki˙̄x(t)])}dt < 0.

By multiplying the above inequalities by λ̄i, i = 1, 2, . . . , r, and then adding, we
get

∫ b

a

{
r
∑

i=1

λ̄iF (t, x̂, ˙̂x, x̄, ˙̄x, f i
x̄(t)− v̄ikix̄(t)−

d

dt
[f i

˙̄x(t)− v̄iki˙̄x(t)])}dt < 0.

Upon using (7) and (8), we get

∫ b

a

{F (t, x̂, ˙̂x, x̄, ˙̄x,

r
∑

i=1

λ̄i(f i
x̄(t)− v̄ikix̄(t)−

d

dt
[f i

˙̄x(t)− v̄iki˙̄x(t)]))}dt < 0.

(10)

Using ȳ(t) ≧ 0, t ∈ I, x̂ ∈ X0, and (5), we obtain

G(x̂) ≤ 0 = G(x̄).

Since G(x) is (F, ρ′)-quasiinvex type 1 functional of order m at x̄ with respect
to θ,

∫ b

a

{F (t, x̂, ˙̂x, x̄, ˙̄x, ȳ(t)T gx̄(t)−
d

dt
[ȳ(t)T g ˙̄x(t)]) + ρ′‖θ(t, x̂, x̄)‖m}dt ≤ 0.

(11)
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Using (4), (9) and (7) after adding both sides of the inequalities (10) and (11),
we get

ρ′
∫ b

a

{‖θ(t, x̂, x̄)‖m}dt < 0.

This is a contradiction, as ρ′ > 0, ‖θ(t, x̂, x̄)‖m ≥ 0, for all positive integer m.

This completes the proof. �

(b) Proof runs along the same lines as the proof of part (a) and is hence
omitted.

Theorem 3 Let x̄ ∈ X0 and suppose that there exist λ̄ = (λ̄1, . . . , λ̄r) ∈ R
r, v̄ =

(v̄1, v̄2, . . . , v̄r) ∈ R
r
+ and a piecewise smooth function ȳ : I → R

p such that
conditions (4), (5) and (6) are satisfied.

Let us write θi(x) =
∫ b

a
{f i(t, x, ẋ) − v̄iki(t, x, ẋ)}dt, i = 1, 2, . . . , r and G(x) =

∫ b

a
{ȳ(t)T g(t, x, ẋ)dt. Further, if any one of the following conditions holds:
(a) θi(x), for i = 1, 2, . . . , r are (F, ρi)-pseudoinvex type 2 functionals of

order m at x̄ with respect to η and θ, and G(x) is (F, ρ′)-quasiinvex type 1
functional of order m at x̄ with respect to η and θ, where ρ′, ρi ∈ int R+, for i =
1, 2, . . . , r.

(b) θi(x), for i = 1, 2, . . . , r are (F, ρi)-quasiinvex type 2 functionals of order
m at x̄ with respect to η and θ, and G(x) is strictly (F, ρ′)-quasiinvex type 1
functional of order m at x̄ with respect to η and θ, where ρ′, ρi ∈ intR+, for i =
1, 2, . . . , r.
Then x̄ is a weak efficient solution of order m with respect to θ for (P).

Proof Proof runs along the similar lines as the proof of Theorem 3 and is
hence omitted.

Remark 2 If F (t, x, ẋ, x̄, ˙̄x, ξ) = (η(t, x, x̄))T ξ, where η : I×R
n×R

n → R
n with

η(t, x, x̄) = 0 at t if x(t) = x̄(t), then Definition 6 reduces to ρ− (η, θ)−invexity
of order m. So, the above results hold good for this class also.

5. Higher order duality results

Duality results are important, because they lay foundation for many computa-
tional techniques in optimization problems. Recently, several researchers (see
Antczak, 2014, 2015; Arana and Ortegon Gallego, 2013, Kumar and Sharma,
2017, Sharma et al., 2017) contributed to the development of duality theory
for multiobjective variational problems. Higher order duality has even greater
significance than the first order duality, since it provides tighter bounds for
the value of the objective function when approximations are used, because it
involves more parameters. One more advantage of higher order duality, when
applicable, is that if a feasible point in the primal problem is given and first
order duality does not apply, then we can use higher order duality to provide
a lower bound on the value of the primal. Following the parametric approach
of Bector (see Bector et al., 1993), the higher order dual (D) to multiobjective
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fractional variational problem is defined as follows:

(D) Maximize v̄ = (v̄1, v̄2, . . . , v̄r)

subject to

r
∑

i=1

λ̄i[▽ph
i(t, x̄, ˙̄x, p)− v̄i ▽p l

i(t, x̄, ˙̄x, p)]+

p
∑

j=1

ȳj(t)▽p ξ
j(t, x̄, ˙̄x, p) = 0 t ∈ I, (12)

∫ b

a

{

p
∑

j=1

ȳj(t)(gj(t, x̄, ˙̄x) + ξj(t, x̄, ˙̄x, p))−

pT (

p
∑

j=1

ȳj(t)▽p ξ
j(t, x̄, ˙̄x, p))}dt ≧ 0. (13)

ȳj(t) ≥ 0, t ∈ I, j ∈ {1, 2, . . . , p}, x̄ ∈ X. (14)

∫ b

a

{f i(t, x̄, ˙̄x) + hi(t, x̄, ˙̄x, p)− pT ▽p h
i(t, x̄, ˙̄x, p)

− v̄i(ki(t, x̄, ˙̄x) + li(t, x̄, ˙̄x, p)− pT ▽p l
i(t, x̄, ˙̄x, p))}dt ≥ 0, i = 1, 2, . . . , r

(15)

x̄ ∈ X, λ̄ ≥ 0,

r
∑

i=1

λ̄i = 1, ȳ(t) ≧ 0, t ∈ I, v̄i ≥ 0, i = 1, 2, . . . , r. (16)

x̄(a) = α, x̄(b) = β, (17)

where hi : I×R
n×R

n×R
n → R, li : I×R

n×R
n×R

n → R, i ∈ {1, 2, . . . , r}, ξj :
I × R

n × R
n × R

n → R are differentiable functions.

Let Y0 be the set of all feasible solutions of (D). In order to facilitate the
derivation of higher order duality for this solution concept, we introduce the
following class of functionals.

Let there exist a real number ρ and a functional F : I × R
n × R

n × R
n ×

R
n × R

n → R such that F (t, x, ẋ, x̄, ˙̄x, ·) is sub-linear on R
n. Let p ∈ R

n and
h : I × R

n × R
n × R

n → R be a differentiable function.
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Definition 12 A functional Φ(x) is said to be higher order (F, ρ, θ,m, h)−invex
at x̄ ∈ X if

Φ(x)− Φ(x̄)−

∫ b

a

{h(t, x̄, ˙̄x, p)− pT ▽p h(t, x̄, ˙̄x, p)}dt

≥

∫ b

a

{F (t, x, ẋ, x̄, ˙̄x,▽ph(t, x̄, ˙̄x, p)) + ρ‖θ(t, x, x̄)‖m}dt, for all x ∈ X.

Remark 3 (a) If h(t, x̄, ˙̄x, p) = pT [φx̄(t)−
d
dt
(φ ˙̄x(t))] then Definition 12 reduces

to Definition 6.

(b) If h(t, x̄, ˙̄x, p) = pT [φx̄(t)−
d
dt
(φ ˙̄x(t))]+

1
2p

T [φx̄x̄(t)−2 d
dt
φx̄ ˙̄x(t)+

d2

dt2
φ ˙̄x ˙̄x(t)]p,

then Definition 6 reduces to the definition of second order (F, α, ρ, θ)− convexity
with α(x, x̄) = 1, θ : I ×R

n×R
n → R, β(t) = p, t ∈ I (see Jayswal et al., 2015).

Various duality results, connecting efficient solutions of primal and its dual
problem are established in the sequel.

Theorem 4 (Weak duality) Let x ∈ X0, (x̄, λ̄, v̄, ȳ, p) ∈ Y0, and let us write

F i(x) =
∫ b

a
{f i(t, x, ẋ)− v̄iki(t, x, ẋ)}dt, i = 1, 2, . . . , r and

G(x) =
∫ b

a
{

r
∑

i=1

ȳi(t)gi(t, x, ẋ)}dt.

Assume
(i) F i(x), i = 1, 2, . . . , r to be higher order (F, ρi, θ,m, ηi)-strictly invex at x̄,
where ηi(t, x, ẋ, p) = hi(t, x, ẋ, p)− v̄ili(t, x, ẋ, p), i = 1, 2, . . . , r.
(ii) G(x) to be higher order (F, ρ′, θ,m, h′)−invex at x̄, where

h′(t, x, ẋ, p) =
m
∑

j=1

ȳj(t)(ξj(t, x, ẋ, p)).

(iii) (ρ1, ρ2, . . . , ρr) ∈ intRr
+ and ρ′ > 0.

Then there exist c = (c1, c2, . . . , cr) ∈ intRr
+ and d = (d1, d2, . . . , dr) ∈ intRr

+

such that the following cannot hold:

∫ b

a
{f i(t, x, ẋ)− ci‖θ(t, x, x̄)‖m}dt

∫ b

a
{ki(t, x, ẋ) + di‖θ(t, x, x̄)‖m}dt

≤ v̄i,

for all i ∈ {1, 2, . . . , r} with strict inequality for at least one i.

Proof Using (i) and (15), we get

F i(x) >

∫ b

a

{F (t, x, ẋ, x̄, ˙̄x,▽pη
i(t, x̄, ˙̄x, p)) + ρi‖θ(t, x, x̄)‖m}dt,

By multiplying the above inequalities by λ̄i, i = 1, 2, . . . , r and then adding, we
obtain

r
∑

i=1

λ̄iF i(x) >

∫ b

a

{

r
∑

i=1

λ̄iF (t, x, ẋ, x̄, ˙̄x,▽pη
i(t, x̄, ˙̄x, p))+

r
∑

i=1

λ̄iρi‖θ(t, x, x̄)‖m}dt,
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On using (7) and (8), we get

r
∑

i=1

λ̄iF i(x) >

∫ b

a

{F (t, x, ẋ, x̄, ˙̄x,
r
∑

i=1

λ̄i▽pη
i(t, x̄, ˙̄x, p))+

r
∑

i=1

λ̄iρi‖θ(t, x, x̄)‖m}dt.

Using feasibility of x and (x̄, λ̄, v̄, ȳ, p) along with condition (ii), we obtain

0 ≥

∫ b

a

{F (t, x, ẋ, x̄, ˙̄x,▽ph
′(t, x̄, ˙̄x, p)) + ρ′‖θ(t, x, x̄)‖m}dt.

By adding the above two inequalities and using (12), (7) and (8), we obtain

r
∑

i=1

λ̄iF i(x) >

∫ b

a

{

r
∑

i=1

λ̄iρi + ρ′}‖θ(t, x, x̄)‖mdt.

Contrary to the result, assume that for any c = (c1, c2, . . . , cr) ∈ intRr
+ and

d = (d1, d2, . . . , dr) ∈ intRr
+

∫ b

a
{f i(t, x, ẋ)− ci‖θ(t, x, x̄)‖m}dt

∫ b

a
{ki(t, x, ẋ) + di‖θ(t, x, x̄)‖m}dt

≤ v̄i,

for all i ∈ {1, 2, . . . , r} with strict inequality for at least one i.

That is,

r
∑

i=1

λ̄iF i(x) ≤

r
∑

i=1

λ̄i(ci + div̄i)

∫ b

a

‖θ(t, x, x̄)‖mdt,

for all i ∈ {1, 2, . . . , r} with strict inequality for at least one i.

Choose c and d such that
r
∑

i=1

λ̄i(ci + div̄i) =
r
∑

i=1

λ̄iρi + ρ′, we arrive at a contra-

diction. Hence the result follows. �

Strong duality guarantees the existence of feasible solution of the higher
order dual problem if the primal problem has an efficient solution, which is
evident from the previous literature, but the solution concept considered earlier
was an efficient solution, whereas in this paper efficiency of higher order is taken
as a new solution concept. The strong duality theorem, proved here, provides
more stable solutions for the dual problem.

Theorem 5 (Strong duality) Let x̄ be an efficient solution of order m with
respect to θ for (P ), which is normal. Then, there exist λ̄, p ∈ R

r, v̄ ∈ R
r
+ and

a piecewise smooth function ȳ : I → R
p such that (x̄, λ̄, v̄, ȳ, p) ∈ Y0. Further,

if weak duality theorem holds, then (x̄, λ̄, v̄, ȳ, p) is an efficient solution of order
m with respect to θ for (D).

Proof Since x̄ is an efficient solution of order m with respect to θ for (P)
which is normal, hence, by Theorem 1, there exist λ̄ ∈ R

r, v̄ ∈ R
r
+, a piecewise
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smooth function ȳ : I → R
p and p = 0 such that (x̄, λ̄, v̄, ȳ, p) ∈ Y0.

Let, if possible, (x̄, λ̄, v̄, ȳ, p) be not an efficient solution of order m with respect

to θ for (P), then for any ρ = (ρ1, ρ2, ..., ρr) ∈ intRr
+, there exist (x̂, λ̂, v̂, ŷ, p̂) ∈

Y0 such that

v̂i + ρi
∫ b

a

‖θ(t, x̂, x̄)‖mdt ≥ v̄i =

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

(18)

for all i ∈ {1, 2, . . . , r} with strict inequality for at least one i.

Case (i)
If ‖θ(t, x̂, x̄)‖m = 0, then for any c = (c1, c2, . . . , cr) ∈ intRr

+ and
d = (d1, d2, . . . , dr) ∈ intRr

+, we have

∫ b

a
{f i(t, x̄, ˙̄x)− ci‖θ(t, x̂, x̄)‖m}dt

∫ b

a
{ki(t, x̄, ˙̄x) + di‖θ(t, x̂, x̄)‖m}dt

≤ v̂i

for all i ∈ {1, 2, ..., r} with strict inequality for at least one i, which is a contra-
diction to the weak duality theorem.

Case (ii)
Assume ‖θ(t, x̂, x̄)‖m 6= 0.

For any c = (c1, c2, . . . , cr) ∈ intRr
+ and d = (d1, d2, . . . , dr) ∈ intRr

+, define

ρi =
ci
∫ b

a
ki(t, x̄, ˙̄x)dt+ di

∫ b

a
f i(t, x̄, ˙̄x)dt

(
∫ b

a
{ki(t, x̄, ˙̄x) + di‖θ(t, x̂, x̄)‖m}dt)

∫ b

a
ki(t, x̄, ˙̄x)dt

, i = 1, 2, . . . , r.

Substituting this in (18) yields

∫ b

a
{f i(t, x̄, ˙̄x)− ci‖θ(t, x̂, x̄)‖m}dt

∫ b

a
{ki(t, x̄, ˙̄x) + di‖θ(t, x̂, x̄)‖m}dt

≤ v̂i,

for all i ∈ {1, 2, . . . , r} with strict inequality for at least one i, which contradicts
the weak duality theorem. Thus, (x̄, λ̄, v̄, ȳ, p) is an efficient solution of order m
with respect to θ for (D). �
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