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VARIATIONAL EQUATIONS
ON THE MÖBIUS STRIP

43.1 INTRODUCTION

The aim of this paper is to analyse restrictions of ordinary differential equations,
defined on a Euclidean space, with respect a topologically non-trivial example of an
embedded submanifold the 2-dimensional Möbius strip. The general problem is what can
be said about the influence of the topology on variationality of differential equations,
given on submanifolds, and on the existence and structure of the corresponding local and
global variational principles (see Krupka, Urban, and Volná [4]).

For this purpose, we introduce an adapted smooth atlas on a Euclidean space with
respect to the Möbius strip, and study its properties. We apply results of the variational
sequence theory on sheaves of differential forms, although we do not introduce this concept
here (cf. Krupka [2], Volná and Urban [8]; see also Takens [7]). In particular, we refer
to our recent work Krupka, Urban, and Volná [4], where a general theory of variational
submanifolds has been developed.

For standard notions of smooth manifolds (chart, atlas, submanifold, adapted chart)
we refer to Lee [5]. Basic notions of the jet theory as well as an introduction to variational
principles on fibered manifolds can be found in Krupka and Saunders [3]. The classical
textbook on sheaf theory, needed for understanding of the local and global variationality,
is Warner [9].

The (global) Cartesian coordinates on the Euclidean space R2, resp. R3, are denoted
by (x, y), resp. (x, y, z). Throughout we apply the Einstein summation convention. All
figures are created in GeoGebra.
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43.2 POLAR COORDINATES AND THE ARCTANGENT WITH TWO ARGUMENTS

First we recall a standard modification of the arctangent function, needed for further
considerations. The function atan2 on R2 without the origin, defined by

atan2(y, x) =



atan (y/x) , x > 0 (quadrants I and IV, positive x-axis)
atan (y/x) + π, x < 0, y ≥ 0 (quadrant II, negative x-axis)
atan (y/x)− π, x < 0, y < 0 (quadrant III)
π/2, x = 0, y > 0 (positive y-axis)
−π/2, x = 0, y < 0 (negative y-axis)
undefined, x = 0, y = 0 (the origin in (0, 0) ∈ R2)

(43.1)

is sometimes also called the arctangent with two arguments. Note that this function has
values in the interval (−π, π], and the graphs of atan2 and atan (y/x) coincide in the
quadrants I and IV, as demonstrated by the following figure Fig. 43.1.

Fig. 43.1 Graph of function (x, y)→ atan2(y, x) (green) and function (x, y)→ atan(y/x) (red)
Source: own elaboration

We remark that the function atan2 was first introduced in programming languages,
and later became common in other fields of science and engineering. In particular, one
can use this function for instance in Matlab, Java, C++, GeoGebra, Mathematica, or in
most spreadsheets software.

In this paper, we shall employ the function atan2 for constructing adapted coor-
dinates to the Möbius strip in R3. This is motivated by the following well-known fact.
On the open set U = R2 \ ((−∞, 0] × {0}) in R2, the polar coordinates Φ = (r, ϕ) are
defined, where r is the distance of a point of U from the origin (0, 0) ∈ R2, and ϕ is the
angle with values in (−π, π) between the vector with endpoints the origin and a point
of U , and the positive x-axis. The transformation from polar to Cartesian coordinates
Φ−1 : Φ(U) → U , where Φ(U) = (0,∞) × (−π, π), and the inverse transformation from
Cartesian to polar coordinates Φ : U → Φ(U) are given by the equations

Φ−1 : x = r cosϕ, y = r sinϕ, Φ : r =
√
x2 + y2, ϕ = atan2 (y, x),

where atan2 is given by (43.1).
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43.3 ADAPTED ATLAS TO THE MÖBIUS STRIP MR,a

In this section, we consider the Möbius strip MR,a (without boundary) of radius R
and wideness 2a, where 0 < a < R, as a two-dimensional embedded submanifold of the
Euclidean space R3. MR,a is also called the open Möbius strip. We observe that MR,a can
be parametrized by the equations

x =
(
R + τ cos ϕ2

)
cosϕ, y =

(
R + τ cos ϕ2

)
sinϕ, z = τ sin ϕ2 , (43.2)

where 0 ≤ ϕ < 2π, −a < τ < a, and then it corresponds to the figure Fig. 43.2.

Fig. 43.2 Möbius strip
Source: own elaboration

Equations (43.2) can be used for construction of a smooth atlas on the open subset X of
R3,

X = R3 \ {(0, 0, z) | z ∈ R}, (43.3)

which consists of two adapted charts to MR,a. We put

V = R3 \ ((−∞, 0]× {0} × R) (43.4)

an open subset of R3, and Ψ = (ϕ, τ, κ), where

ϕ = atan2 (y, x),

τ =
(√

x2 + y2 −R
) √2

2

√
1 + x√

x2 + y2
+ sgn(y)z

√
2

2

√
1− x√

x2 + y2
, (43.5)

κ = −
(√

x2 + y2 −R
)
sgn(y)

√
2

2

√
1− x√

x2 + y2
+ z

√
2

2

√
1 + x√

x2 + y2
.

It is straightforward to check that (V,Ψ) is a chart on X. Indeed, Ψ has the inverse
mapping Ψ−1 : Ψ(V )→ V , defined by the equations

x =
(
R + τ cos ϕ2 − κ sin ϕ2

)
cosϕ, y =

(
R + τ cos ϕ2 − κ sin ϕ2

)
sinϕ,

z = τ sin ϕ2 + κ cos ϕ2 ,
(43.6)

where the domain Ψ(V ) is an open subset of R3, expressed by

Ψ(V ) =
{

(ϕ, τ, κ) ∈ R3 | −π < ϕ < π, τ >
−R + κ sin(ϕ/2)

cos(ϕ/2) , κ ∈ R
}
.
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The Jacobian det J of Ψ−1 does not vanish. Indeed, we have

det J = −R− τ cos ϕ2 + κ sin ϕ2 < 0.

Note that the open subset Ψ(V ) of R3 is bounded by the surface of equation

τ = −R + κ sin(ϕ/2)
cos(ϕ/2) ,

and it contains the origin of R3; for constant ϕ, Ψ(V ) is bounded by lines (see Fig. 43.3,
where a line of boundary is highlighted for ϕ = 2π/3). The corresponding half-plane of τ
and κ-axis is given by Fig. 43.3.

Fig. 43.3 Border surface and one of underlying halfplane for second coordinate system
Source: own elaboration

Using the parametrization (43.2) ofMR,a, it is easily seen from the chart transforma-
tions (43.5), (43.6), that MR,a is characterized by the equation κ = 0, where τ ∈ (−a, a).
We call the pair (V,Ψ), Ψ = (ϕ, τ, κ), given by (43.4) and (43.5), the first adapted chart
to the Möbius strip MR,a.

In order to obtain an atlas on X (43.3), we complete (V,Ψ) by an additional chart
on X as follows. Consider an open subset V̄ of R3,

V̄ = R3 \ ([0,∞)× {0} × R) , (43.7)

and Ψ̄ = (ϕ̄, τ̄ , κ̄), where

ϕ̄ =

atan2 (y, x), y ≥ 0,
atan2 (y, x) + 2π, y < 0,

τ̄ = −
(√

x2 + y2 −R
) √2

2

√
1 + x√

x2 + y2
− sgn(y)z

√
2

2

√
1− x√

x2 + y2
, (43.8)

κ̄ =
(√

x2 + y2 −R
)
sgn(y)

√
2

2

√
1− x√

x2 + y2
− z
√

2
2

√
1 + x√

x2 + y2
.
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The inverse mapping Ψ̄−1 : Ψ̄(V̄ )→ V̄ has the equations

x =
(
R + τ̄ cos ϕ̄2 − κ̄ sin ϕ̄2

)
cos ϕ̄, y =

(
R + τ̄ cos ϕ̄2 − κ̄ sin ϕ̄2

)
sin ϕ̄,

z = τ̄ sin ϕ̄2 + κ̄ cos ϕ̄2 ,

where the domain Ψ̄(V̄ ) is an open subset of R3, expressed by

Ψ̄(V̄ ) =
{

(ϕ̄, τ̄ , κ̄) ∈ R3 | 0 < ϕ̄ < 2π, τ̄ ∈ R, κ̄ <
R + τ̄ cos(ϕ̄/2)

sin(ϕ̄/2)

}
.

Again, it is easy to observe that Ψ̄(V̄ ) is bounded by the surface (see Fig. 43.4) of the
equation

κ̄ = R + τ̄ cos(ϕ̄/2)
sin(ϕ̄/2) ,

and it lies below this surface.

Fig. 43.4 Border surface and one of underlying halfplane for second coordinate system
Source: own elaboration

In the chart (V̄ , Ψ̄), MR,a is characterized by the equation κ̄ = 0, where τ̄ ∈ (−a, a).
We call (V̄ , Ψ̄) Ψ̄ = (ϕ̄, τ̄ , κ̄), given by (43.7) and (43.8), the second adapted chart to
the Möbius strip MR,a. Clearly X = V ∪ V̄ . It remains to show that the coordinate
transformations between (V,Ψ) and (V̄ , Ψ̄) are differentiable. Indeed, restricting both
charts onto V ∩ V̄ = R3 \(R× {0} × R) ,we have the coordinate transformations Ψ◦Ψ̄−1 :
Ψ̄(V̄ ) \ {ϕ̄ = π} → Ψ(V ) \ {ϕ = 0},

Ψ ◦ Ψ̄−1(ϕ̄, τ̄ , κ̄) =

(ϕ̄, τ̄ , κ̄), ϕ̄ ∈ (0, π),
(ϕ̄− 2π,−τ̄ ,−κ̄), ϕ̄ ∈ (π, 2π),

and Ψ̄ ◦Ψ−1 : Ψ(V ) \ {ϕ = 0} → Ψ̄(V̄ ) \ {ϕ̄ = π},

Ψ̄ ◦Ψ−1(ϕ, τ, κ) =

(ϕ, τ, κ), ϕ ∈ (0, π),
(ϕ+ 2π,−τ,−κ), ϕ ∈ (−π, 0).

Thus we obtained a smooth atlas on X (43.3), consisting of the charts (V,Ψ) and (V̄ , Ψ̄),
which is called adapted to the Möbius strip MR,a.
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43.4 VARIATIONAL EQUATIONS ON THE MÖBIUS STRIP MR,a

Consider now the canonical embedding

ι : R×MR,a → R× R3, (43.9)

as a morphism of fibered manifolds over the identity idR of the real line R. The jet
prolongation

J2ι : J2(R×MR,a)→ J2(R× R3) (43.10)

of ι is defined for any section γ : U → R ×MR,a, U ⊂ R open, by J2ι(J2
t γ) = J2

t (ι ◦ γ).
Note that the mapping J2ι (43.10) acts on differential forms, defined on J2(R × R3), by
means of the pull-back operation. We find a chart expression of J2ι by a straightforward
calculation. Let (V ∩MR,a,Ψ|V ∩MR,a

), Ψ|V ∩MR,a
= (ϕ, τ), be the chart onMR,a, associated

with the first adapted chart (V,Ψ), Ψ = (ϕ, τ, κ), (43.4), (43.5). Suppose ι (43.9) is
expressed by equations

t ◦ ι = t, x ◦ ι = f 1(ϕ, τ), y ◦ ι = f 2(ϕ, τ), z ◦ ι = f 3(ϕ, τ),

where

f 1(ϕ, τ) =
(
R + τ cos ϕ2

)
cosϕ, f 2(ϕ, τ) =

(
R + τ cos ϕ2

)
sinϕ, f 3(ϕ, τ) = τ sin ϕ2 ,

with respect to the Cartesian coordinates (t, x, y, z) on R × R3 and the associated coor-
dinates (t, ϕ, τ) on R × (V ∩MR,a). Then J2ι is expressed in the associated coordinates
(t, ϕ, τ, ϕ̇, τ̇ , ϕ̈, τ̈) by

t ◦ J2ι = t, x ◦ J2ι = f 1(ϕ, τ), y ◦ J2ι = f 2(ϕ, τ), z ◦ J2ι = f 3(ϕ, τ),

ẋ ◦ J2ι = d

dt
f 1(ϕ, τ), ẏ ◦ J2ι = d

dt
f 2(ϕ, τ), ż ◦ J2ι = d

dt
f 3(ϕ, τ),

ẍ ◦ J2ι = d2

dt2
f 1(ϕ, τ), ÿ ◦ J2ι = d2

dt2
f 2(ϕ, τ), z̈ ◦ J2ι = d2

dt2
f 3(ϕ, τ),

where df i/dt = (∂f i/∂ϕ)ϕ̇+(∂f i/∂τ)τ̇ , i = 1, 2, 3, is the formal derivative operator acting
on functions.

Consider a system of second-order differential equations on J2(R× R3),

εi(x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈) = 0, i = 1, 2, 3, (43.11)

for unknowns the curves t→ (x(t), y(t), z(t)). We assign to the left-hand sides of (43.11)
a differential source form

ε = εiω
i ∧ dt, (43.12)

where ω1 = dx− ẋdt, ω2 = dy− ẏdt, and ω3 = dz− żdt, are contact 1-forms satisfying the
property (J1γ)∗ωi = 0 for every section γ of R×R3. In accordance with the general theory
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of variational equations we say that the system (43.11) (or the source form (43.12)) is
locally variational, if there exists a real-valued function L = L (x, y, z, ẋ, ẏ, ż) for which
(43.11) is the system of the Euler–Lagrange equations, i.e.

ε1 = ∂L

∂x
− d

dt

∂L

∂ẋ
, ε2 = ∂L

∂y
− d

dt

∂L

∂ẏ
, ε3 = ∂L

∂z
− d

dt

∂L

∂ż
. (43.13)

If L exists, it is called the Lagrange function for the system (43.11), and (43.11)
represents the system of equations for extremals of a variational functional, associated
with L .

The necessary and sufficient conditions for (local) variationality of systems of dif-
ferential equations are the well-known Helmholtz conditions. For second-order system
(43.11) we have the following result. Denote x1 = x, x2 = y, x3 = z, and analogously the
dot coordinates.

Theorem 43.1 Let ε be a source form given by (43.12). The following conditions are
equivalent:

(a) The equations (43.13) has a solution.
(b) The functions εi satisfy the conditions

∂εi
∂ẍj
− ∂εj
∂ẍi

= 0, ∂εi
∂ẋj

+ ∂εj
∂ẋi
− d

dt

(
∂εi
∂ẍj

+ ∂εj
∂ẍi

)
= 0,

∂εi
∂xj
− ∂εj
∂xi
− d

dt

(
∂εi
∂ẋj
− ∂εj
∂ẋi

)
= 0.

Proof For the proof see e.g. Sarlet [6], or Krupka [1].

The induced source form (J2ι)∗ε on J2(R×MR,a) has the expression

(J2ι)∗ε = εϕω
ϕ ∧ dt+ ετω

τ ∧ dt, (43.14)

where ωϕ = dϕ− ϕ̇dt, ωτ = dτ − τ̇ dt, and

εϕ = (ε1 ◦ J2ι)
(
−R sinϕ+ (τ/2) sin(ϕ/2)− 3τ cos2(ϕ/2) sin(ϕ/2)

)
+ (ε2 ◦ J2ι)

(
R cosϕ+ τ cos(ϕ/2)− 3τ cos(ϕ/2) sin2(ϕ/2)

)
+ (ε3 ◦ J2ι)(τ/2) cos(ϕ/2),

ετ = (ε1 ◦ J2ι)
(
cos(ϕ/2)− 2 cos(ϕ/2) sin2(ϕ/2)

)
+ 2(ε2 ◦ J2ι) sin(ϕ/2) cos2(ϕ/2) + (ε3 ◦ J2ι) sin(ϕ/2).

By Theorem 43.1, the induced source form (J2ι)∗ε is locally variational if and only
if its components εϕ and ετ satisfy

∂εϕ
∂τ̈
− ∂ετ
∂ϕ̈

= 0, ∂εϕ
∂ϕ̇
− d

dt

∂εϕ
∂ϕ̈

= 0, ∂ετ
∂τ̇
− d

dt

∂ετ
∂τ̈

= 0,

∂εϕ
∂τ̇

+ ∂ετ
∂ϕ̇
− d

dt

(
∂εϕ
∂τ̈

+ ∂ετ
∂ϕ̈

)
= 0, ∂εϕ

∂τ
− ∂ετ
∂ϕ
− 1

2
d

dt

(
∂εϕ
∂τ̇
− ∂ετ
∂ϕ̇

)
= 0.

(43.15)
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If these conditions are satisfied, then the variational sequence theory implies that (J2ι)∗ε,
or the system of equations εϕ = 0 and ετ = 0, is also globally variational, i.e. for (J2ι)∗ε
there exists a Lagrange function L̃ defined on the jet prolongation J2(R×MR,a) of the
Möbius strip MR,a.

CONCLUSION

We present the application of the variational theory on smooth manifolds. A smooth
atlas in R3, adapted to the Möbius strip is described and used for analysis of restrictions
of ordinary differential equations from a Euclidean space to the Möbius strip.
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VARIATIONAL EQUATIONS ON THE MÖBIUS STRIP

Abstract: In this paper, systems of second-order ordinary differential equations (or dynamical
forms in Lagrangian mechanics), induced by the canonical embedding of the two-dimensional
Möbius strip into the Euclidean space, are considered in the class of variational equations. For a
given non-variational system, the conditions assuring variationality (Helmholtz conditions) for
the induced system on the Möbius strip are formulated. The theory contributes to variational
foundations of geometric mechanics.

Keywords: Lagrangian; Euler-Lagrange equations; Helmholtz conditions; fibered manifold; Möbius
strip.

VARIAČNÍ ROVNICE NA MÖBIOVĚ PÁSCE

Abstrakt: V tomto článku je studována variačnost systémů obyčejných diferenciálních rovnic
(dynamických forem v geometrické mechanice) druhého řádu, kterou indukuje kanonické vložení
dvojrozměrné Möbiovy pásky do Euklidova prostoru. Pro daný nevariační systém rovnic jsou for-
mulovány nutné a postačující podmínky variačnosti (Helmholtzovy podmínky). Práce je příspěvkem
k variačním základům geometrické mechaniky na Möbiově pásce.

Klíčová slova: Lagrangian; Euler-Lagrangeovy rovnice; Helmholtzovy podmínky; fibrovaná va-
rieta; Möbiova páska.
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