PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extension of a phase transformation model for partial hardening in hot stamping

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The quality of predicted microstructural and mechanical properties in hot stamping simulations relies considerably on the material model. Many researchers studied the effect of the plastic deformation on the phase transformation of the most commonly used hot stamping steel 22MnB5, and proved that the deformation applied at high temperature promotes the formation of ferrite, pearlite and bainite. This behaviour has to be integrated into materials modelling. In this study, the effect of pre-strain on the phase transformation of the material is considered. The specimens are heated to austenitization temperature, isothermally deformed at 700°C, and quenched down to room temperature. The phase fractions and the temperature-dilatation behaviour obtained from the experiments are used to calibrate the material model. By using the experimental data obtained from dilatometer testing, the accuracy of the material model is evaluated. Additionally, an attempt to predict the results between the tested data points by using interpolation was made and compared with the simulation results.
Rocznik
Strony
87--97
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Chair of Mechanical Design and Manufacturing, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
autor
  • Chair of Mechanical Design and Manufacturing, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
autor
  • Chair of Mechanical Design and Manufacturing, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
Bibliografia
  • [1] KARBASIAN H., TEKKAYA A.E., 2010, A review on hot stamping, Journal of Materials Processing Technology, 210/15, 2103-2188.
  • [2] PAUL A., REUTHER F., NERMANN F., ALBERT A., LANDGREBE D., 2017, Process simulation and experimental validation of hot metal gas forming with new press hardening steel, Journal of Physics, Conf. Series 896.
  • [3] FÜLLER K.-H., 2010, Leichtbau-Konzepte, Werkstoffe, Produktionstechnologien, In: CHIMANI C.M., FRAGNER W., UGGOWITZER P.J., WAHLEN A. (Hrsg), 6, Ranshofener Leichtmetalltage, Ranshofern, Munderfing, Aumayer Druck und Verlags GmbH. & Co KG, 163-173.
  • [4] BRUSCHI S., GHIOTTI A., 2014, Hot stamping, In comprehensive materials processing, edited by HASHMI S., BATAIHA G.F., TYNE C.J.V., YILBAS B., Elsevier, Oxford, 27-54.
  • [5] MORI K.Y., BARIANI P.F., BROSIUS A., BRUSCHI S., MAENOE T., MERKLEIN M., YANAGIMOTO J., 2017, Hot stamping of ultra-high strength steel parts, CIRP Annals, 66/2, 755-777.
  • [6] ROHDE J., JEPPSSON A., 2000, Literature review of heat treatment simulation with respect to phase transformation, residual stresses, and distortion, Scandinavian Journal of Metallurgy. 29, 47-62.
  • [7] NIKRAVESH M., NADERI M., AKBARI G.H., BLECK W., 2015, Phase Transformation in a simulated hot stamping process of boron-bearing steel, Material and Design, 84, 18-24.
  • [8] BHADESHIA H.K.D.H., 2001, Bainite in Steels, Transformations, Microstructure and Properties, 2nd ed. IOM Communications Ltd, Cambridge, 203-213.
  • [9] ÅKERSTRÖM P., OLDENBURG M., 2006, Austenite decomposition during press hardening of a boron steel-Computer simulation and test, Journal of Materials Processing Technology, 174/1-3, 399-406.
  • [10] KOISTINEN D.P., MARBURGER R.E., 1959, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica, 7, 59-60.
  • [11] LEE S.J., PAVILINA E.J., VAN TYNE C.J., 2010, Kinetics modelling of austenite decomposition for an end-quenched 1045 steel, Mater. Sci Eng. A, 527, 3186-3194.
  • [12] HIPPCHEN P., LIPP A., GRASS H., CRAIGHERO P., FLEISCHER M., MERKLEIN M., 2016, Modelling kinetics of phase transformation for the indirect hot stamping process to focus on car body parts with tailored properties, Journal of Material Processing Technology, 228, 59-67.
  • [13] KIRKALDY J.S., VENUGOPALAN D., 1983, Prediction of microstructure and hardenability in low-alloy steels, Phase Transformation in Ferrous Alloys, 125-148.
  • [14] ULTGREN A., 1938, Diskussion über “The Physics of Hardenability” von R.F. Mehl. Hardenability of Alloy Steels, 55-56.
  • [15] MUSZKA K., MADEJ L., STEFANSKA-KADZIELA M., MAJTA J., 2014, Microstructure-based numerical modelling of manufacturing processes of nanolayered material, Journal of Machine Engineering, 14/1, 39-52.
  • [16] Material Model, 2015, Ls-Dyna keyword user’s manual, 2, Livermore Software Technology Corporation.
  • [17] BAMBACH M., BUHL J., HART-RAWUNG T., LECHNER M., MERKLEIN M., Towards virtual deformation dilatometry for design of hot stamping process, Procedia Engineering, (in print).
  • [18] YAFEI S., YONGJUN T., JING S., DONGJIE N., 2009, Effect of temperature and composition on thermal properties of carbon steel, CCDC 2009, Chinese Control and Decision Conference.
  • [19] PRESTON S.D., MARSDEN B.J., 2005, Changes in the coefficient of thermal expansion in stressed Gilsocarbon graphite, Carbon 44, 1250-1257.
  • [20] LOYER A., DORLOT J.M., 1970, Density change in Iron after tensile test, Phys. Stat. Sol. (a) 2, 91.
  • [21] BLECK W., 2013, Material science of steel, Department of Ferrous Metallurgy, RWTH Aachen University.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ddf033f-4aa8-418b-ad73-be7e1c9d4aa1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.