PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Inverse kinematics model for a 18 degrees of freedom robot

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of humanoid robots is still a challenge for the scientific community, although there are several related works in this area, several limitations have been found in the literature that drive the need to develop an inverse kinematic modeling of biped robots. This paper presents a research proposal for the Bioloid Premium robot. The objective is to propose a complete solution to the inverse kinematics model for a 18 DOF (Degrees Of Freedom) biped robot. This model will serve as a starting point to obtain the dynamic model of the robot in a subsequent work. The proposed methodology can be extended to other biped robots.
Twórcy
  • Language and Knowledge Engineering (LKE), Benemérita Univer‐ sidad Autónoma de Puebla, Puebla, México
  • Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla, México
  • Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla, México
Bibliografia
  • [1] J. Fierro, J. A. Pámanes, V. Santibanez, G. Ruiz and J. Ollervides. “Condiciones para una marcha elemental del robot NAO,” AMRob Journal, Robotics: Theory and Applications, no. 4(1), pp. 13–18, 2014.
  • [2] S. Bertrand, O. Bruneau, F. B. Ouezdou and S. Alfayad. “Closed‐form solutions of inverse kinematic models for the control of a biped robot with 8 active degrees of freedom per leg,” Mechanism and Machine Theory, vol. 49, pp. 117–140, 2012, doi: 10.1016/j.mechmachtheory. 2011.10.014.
  • [3] O. Ruiz, Análisis cinemático y dinámico de un robot bípedo de 12 GDL internos utilizando la formulación Newton‐Euler, Universidad Nacional Autónoma de México, México: MS Thesis, 2014.
  • [4] J. Zhang, Z. Yuan, S. Dong, M. T. Sadiq, F. Zhang and J. Li. “Structural design and kinematics simulation of hydraulic biped robot,” Applied Sciences, vol. 10, no. 18, p. 6377, 2020, doi: 10.3390/app10186377.
  • [5] J. Che, Y. Pan, W. Yan and J. Yu. “Kinematics Analysis of Leg Configuration of An Ostrich Bionic Biped Robot,” International Conference on Robotics and Control Engineering, pp. 19–22, 2021, doi: 10.1145/3462648.3462652.
  • [6] Y. Gong, R. Hartley, X. Da, A. Hereid, O. Harib, J. K. Huang and J. Grizzle. “Feedback control of a cassie bipedal robot: Walking, standing, and riding a segway,” In 2019 American Control Conference (ACC), pp. 4559–4566, 2019, doi: 10.23919/ACC.2019.8814833.
  • [7] J. Che, Y. Pan, W. Yan and J. Yu. “Leg Configuration Analysis and Prototype Design of Biped Robot Based on Spring Mass Model,” In Actuators, vol. 11, no. 3, p. 75, 2022, doi: 10.3390/act11030075.
  • [8] Y. Hu, X. Wu, H. Ding, K. Li, J. Li and J. Pang. “Study of Series‐parallel Mechanism Used in Legs of Biped Robot,” 7th International Conference on Control, Automation and Robotics (ICCAR), pp. 97–102, 2021, doi: 10.1109/ICCAR52225. 2021.9463499.
  • [9] E. Yılmazlar and H. Kuşçu. “Walking pattern generation and control for a bipedal robot,” Machines. Technologies. Materials, vol. 15, no. 3, pp. 99–102, 2021.
  • [10] T. D. Huy, N. C. Cuong and N. T. Phuong. “Control of biped robot with stable walking,” American Journal of Engineering Research (AJER), vol. 2, pp. 129–150, 2013.
  • [11] D. Bharadwaj and M. Prateek. “Kinematics and dynamics of lower body of autonomous humanoid biped robot,” International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 8(4), pp. 141–146, 2019.
  • [12] K. Cherfouh, J. Gu, U. Farooq, M. U. Asad, R. Dey and V. E. Balas. “Bilateral Teleoperation Control of a Bipedal Robot Gait Using a Manipulator,” IFAC-PapersOnLine, vol. 55, no. 1, pp. 765–770, 2022, doi: 10.1016/j.ifacol.2022.04.125.
  • [13] D. A. a. A. Vivas. “Modelado y control de un robot bípedo de nueve grados de libertad,” In VIII Congreso de la Asociación Colombiana de Automática, 2009.
  • [14] S. Kajita, H. Hirukawa, K. Harada and K. Yokoi. “Kinematics,” in Introduction to humanoid robotics, Springer Berlin Heidelberg, 2014, pp. 19–67, doi: 10.1007/978‐3‐642‐54536‐8.
  • [15] E. H. Franco and R. V. Guerrero. “Diseño Mecánico y Análisis Cinemático del Robot Humanoide AXIS,” Pistas Educativas, no. 35(108), 2018.
  • [16] R. L. Williams. “DARwin‐OP humanoid robot kinematics,” In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, vol. 45035, pp. 1187–1196, 2012, doi: 10.1115/DETC2012‐70265.
  • [17] N. Kofinas, E. Orfanoudakis and M. G. Lagoudakis. “Complete analytical inverse kinematics for NAO,” In 2013 13th International Conference on Autonomous Robot Systems, pp. 1–6, 2013, doi: 10.1109/Robotica.2013.6623524.
  • [18] G. A. Castillo, B. Weng, W. Zhang and A. Hereid. “Robust feedback motion policy design using reinforcement learning on a 3D digit bipedal robot,” International Conference on Intelligent Robots and Systems (IROS), pp. 5136–5143, 2021, doi: 10.1109/IROS51168.2021.9636467.
  • [19] M. A. Meggiolaro, M. S. Neto and A. L. Figueroa. “Modeling and Optimization with Genetic Algoithms of Quasi‐Static Gait Patterns in Planar Biped Robots,” In Congreso Internacional de Ingeniería Mecatrónica y Automatización (CIIMA 2016), pp. 1–10, 2016.
  • [20] G. Reyes, J. A. Pamanes, J. E. Fierro and V. Nunez.“Optimum Walking of the Bioloid Humanoid Robot on a Rectilinear Path,” In Computational Kinematics. Springer, Cham, pp. 143‐151, 2018, doi: 10.1007/978‐3‐319‐60867‐9_17.
  • [21] A. B. Krishnan, S. Aswath and G. Udupa. “Real Time Vision Based Soccer Playing Humanoid Robotic Platform,” In Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing, pp. 1–8, 2014, doi: 10.1145/2660859.2660966.
  • [22] J. R. Cerritos‐Jasso, K. A. Camarillo‐Gómez, J. A. Monsiváis‐Medina, G. Castillo‐Alfaro, G. I. Pérez‐Soto and J. A. Pámanes‐García. “Kinematic Modeling of a Humanoid Soccer–Player: Applied to BIOLOID Premium Type A Robot,” In FIRA RoboWorld Congress, Vols. Springer, Berlin, Heidelberg, pp. 49–63, 2013, doi: 10.1007/978‐3‐642‐40409‐2_5.
  • [23] H. D. Chiang and C. S. Tsai. “Kinematics Analysis of a Biped Robot,” In Proceeding of International Conference on Service and Interactive Robots, 2011.
  • [24] C. A. M. Domínguez and E. M. Sánchez. “Análisis estático y dinámico de un robot bípedo durante la fase de soporte simple de un ciclo de marcha,” In Memorias del XXIII Congreso Internacional Anual de la SOMIM, 2017.
  • [25] L. E. Arias, L. I. Olvera, P. J. A. and J. V. Núñez.“Patrón de marcha 3D de tipo cicloidal para humanoides y su aplicación al robot Bioloid,”evista Iberoamericana de Ingeniería Mecánica, Vols. 18(1), 3, 2014.
  • [26] D. A. B. Montenegro, Generación de Trayectorias para un Robot Bípedo basadas en Captura de Movimiento Humano, 2016.
  • [27] J. V. Nunez, A. Briseno, D. A. Rodriguez, J. M. Ibarra and V. M. Rodriguez. “Explicit analytic solution for inverse kinematics of bioloid humanoid robot,” In 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium, pp. 33–38, 2012, doi: 10.1109/SBR‐LARS.2012.62.
  • [28] M. V. Granja Oramas. “Modelación y análisis de la cinemática directa e inversa del manipulador Stanford de seis grados de libertad”, Bachelor’s thesis, Quito, 2014.
  • [29] E. H Franco, R. V. Guerrero, “Diseño Mecánico y Análisis Cinemático del Robot Humanoide AXIS”, Pistas Educativas, 35(108), 2018.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ddd1314-d50c-4ccf-8d7e-2cde42213112
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.