PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of methods for nocturnal sampling of predatory zooplankters in shallow waters

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to assess the suitability of a plankton net (diameter of 60 cm, mesh size of 500 µm) and a column sampler (length of 200 cm, diameter of 5 cm) for estimating the density of zooplankton predatory species (Neomysis integer, Leptodora kindtii, Cercopagis pengoi). Nocturnal sampling was performed once a month (May-November 2018) in the Vistula Lagoon (southern Baltic) in the range depth of 1.3-3.6 m. Statistical analysis indicated no significant differences between the N. integer and C. pengoi density estimated by the two sampling gears. In the case of L. kindtii, the mean density obtained by the column sampler was higher when analyzing all samples together and/or deep-water samples only (p < 0.02). However, no such differences were found at shallow stations i.e. up to ca. 2 m in depth. It was assumed that the more suitable sampling equipment for estimating zooplankton abundance in a shallow, well-mixed transitional (brackish) basin is the column sampler. This type of gear, so far used mainly for sampling of micro and mesozooplankton, allows the simultaneous nocturnal collection of the entire zooplankton size spectrum, including representatives of large predatory species. The suitability of light traps for qualitative studies of zooplankton species responding positively to light under the high turbidity of the Vistula Lagoon was also investigated. The traps proved to be most useful for N. integer (100% frequency), and much less for L. kindtii (46.2%) and C. pengoi (27.3%).
Czasopismo
Rocznik
Strony
71--79
Opis fizyczny
Bibliogr. 43 poz., fot., rys., tab.
Twórcy
  • Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
  • Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
  • Department of Hydrobiology, Faculty of Biology, University of Białystok, Białystok, Poland
Bibliografia
  • [1] Aaser, H. F., Jeppesen, E., Sondergaard, M., 1995. Seasonal dynamics of the mysid Neomysis integer and its predation on the copepod Eurytemora affinis in a shallow hypertrophic brackish lake. Mar. Ecol. Prog. Ser. 127, 47-56. https://doi.org/10.3354/meps127047.
  • [2] Alajarvi, E., Horppila, J., 2004. Diel variations in the vertical distribution of crustacean zooplankton and food selection by planktivorous fish in a shallow turbid lake. Int. Rev. Hydrobiol. 89, 238-249. https://doi.org/10.1002/iroh.200310707.
  • [3] Arndt, E. A., Jansen, W., 1986. Neomysis integer (Leach) in the chain of Boddens South of Darss Zingst (Western Baltic). Ecophysiology and population dynamics. Ophelia 1-15.
  • [4] Branstrator, D. K., Lehman, J. T., 1991. Invertebrate predation in Lake Michigan: Regulation of Bosmina longirostris (O. F. Mueller) by Leptodora kindtii (Focke). Limnol. Oceanogr. 36, 483-495.
  • [5] Chang, K. H., Hanazato, T., 2004. Diel vertical migrations of invertebrate predators (Leptodora kindtii, Thermocyclops taihokuensis, and Mesocyclops sp.) in a shallow, eutrophic lake. Hydrobiologia 528, 249-259. https://doi.org/10.1007/s10750-004-3952-x.
  • [6] Chubarenko, B., Margoński, P., 2008. The Vistula Lagoon. In: Schiewer, U. (Ed.), Ecology of Baltic Coastal waters. Ecological Studies Springer-Verlag, Berlin-Heidelberg, 167-195.
  • [7] Fadeev, V. I., Tarasov, V. G., 2001. Structure and production parameters of the Mysidacea from the Vistula Lagoon, Baltic Sea. Tezisy dokladov VIII Syjezda Gidrobiologicheskogo Obschestva RAN 3, 311-312 [in Russian].
  • [8] Golubkov, S. M., Litvinchuk, L. F., 2015. The role of the alien species Cercopagis pengoi in zooplankton of the Eastern Gulf of Finland of the Baltic Sea. Doklady Biol. Sci 462, 121-123. https://doi.org/10.1134/S0012496615030011.
  • [9] Gutkowska, A., Paturej, E., Kowalska, E., 2012. Qualitative and quantitative methods for sampling zooplankton in shallow coastal estuaries. Ecohydrol. Hydrobiol. 12, 253-263. https://doi.org/10.1016/S1642-3593(12)70208-2.
  • [10] Gyllström, M., Hansson, L. A., Jeppesen, E., Garcia-Criado, F., Gross, E., Irvine, K., Kairesalo, T., Kornijów, R., Miracle, M. R., Nykanen, M., Nõges, T., Romo, S., Stephen, D., Van Donk, E., Moss, B., 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnol. Oceanogr. 50, 2008-2021. https://doi.org/10.4319/lo.2005.50.6.2008.
  • [11] Herzig, A., 1995. Leptodora kindti: efficient predator and preferred prey item in Neusiedler-See, Austria. Hydrobiologia 307, 273-282. https://doi.org/10.1007/Bf00032021.
  • [12] Herzig, A., Auer, B., 1990. The feeding behavior of Leptodora kindti and its Impact on the zooplankton community of Neusiedler-See (Austria). Hydrobiologia 198, 107-117. https://doi.org/10.1007/Bf00048627.
  • [13] Horppila, J., Laakso, S., Niemisto, J., Nurminen, L., 2017. Size-specific net avoidance behavior leads to considerable under-estimation of the biomass of Leptodora kindtii during day time sampling. Int. Rev. Hydrobiol. 102, 151-158. https://doi.org/10.1002/iroh.201701902.
  • [14] Hostens, K., Mees, J., 1999. The mysid-feeding guild of demersal fishes in the brackish zone of the Westerschelde estuary. J. Fish. Biol. 55, 704-719. https://doi.org/10.1111/j.1095-8649.1999.tb00712.x.
  • [15] Irvine, K., Snook, D., Moss, B., 1995. Life histories of Neomysis Integer, and its copepod prey, Eurytemora affinis, in a eutrophic and brackish shallow lake. Hydrobiologia 304, 59-76. https://doi.org/10.1007/Bf02530704.
  • [16] Jeppesen, E., Sondergaard, M., Kanstrup, E., Petersen, B., Eriksen, R. B., Hammershoj, M., Mortensen, E., Jensen, J. P., Have, A., 1994. Does the impact of nutrients on the biological structure and function of brackish and fresh-water lakes differ? Hydrobiologia 275, 15-30.
  • [17] Karabin, A., 1974. Studies on the predatory role of the cladoceran Leptodora kindtii (Focke), in secondary production of two lakes with different trophy. Ekol. Pol. 22, 295-310.
  • [18] Kornijów, R., 2018. Ecosystem of the Polish part of the Vistula Lagoon from the perspective of alternative stable states concept, with implications for management issues. Oceanologia 60 (3), 390-404. https://doi.org/10.1016/j.oceano.2018.02.004.
  • [19] Kornijów, R., Vakkilainen, K., Horppila, J., Luokkanen, E., Kairesalo, T., 2005. Impacts of a submerged plant (Elodea canadensis) on interactions between roach (Rutilus rutilus) and its invertebrate prey communities in a lake littoral zone. Freshwater. Biol 50, 262-276. https://doi.org/10.1111/j.1365-2427.2004.01318.x.
  • [20] Lehtiniemi, M., Gorokhova, E., 2008. Predation of the introduced cladoceran Cercopagis pengoi on the native copepod Eurytemora affinis in the northern Baltic Sea. Mar. Ecol. Prog. Ser. 362, 193-200. https://doi.org/10.3354/meps07441.
  • [21] Lesutienė, J., Semenova, A., Griniene, E., Gasiunaite, Z. R., Savickyte, V., Dmitrieva, O., 2012. Abundance dynamics and functional role of predaceous Leptodora kindtii in the Curonian Lagoon. Cent. Eur. J. Biol. 7, 91-100. https://doi.org/10.2478/s11535-011-0098-5.
  • [22] Livings, M. E., Schoenebeck, C. W., Brown, M. L., 2010. Comparison of Two Zooplankton Sampling Gears in Shallow, Homogeneous Lakes. Prairie Naturalist 42, 19-23.
  • [23] McLeod, L. E., Costello, M. J., 2017. Light traps for sampling marine biodiversity. Helgoland Mar. Res. 71, art. no. 2. https://doi.org/10.1186/s10152-017-0483-1.
  • [24] Moss, B., 1994. Brackish and freshwater shallow lakes – different systems or variations on the same theme? Hydrobiologia 275, 1-14. https://doi.org/10.1007/BF00026695.
  • [25] Moss, B., Kornijów, R., Measey, G. J., 1998. The effects of nymphaeid (Nuphar lutea) density and predation by perch (Perca fluviatilis) on the zooplankton communities in a shallow lake. Freshwater Biol. 39, 689-697. https://doi.org/10.1046/j.1365-2427.1998.00322.x.
  • [26] Naumenko, E. N., 2009. Zooplankton in different types of estuaries (using Curonian and Vistula estuaries as an example). Inland Water Biol. 2, 72-81. https://doi.org/10.1134/S1995082909010118.
  • [27] Naumenko, E. N., 2018. Seasonal and long-term dynamics of population abundance of the invasive species Cercopagis pengoi (Ostroumov, 1891) in the Vistula (Kaliningrad) Lagoon of the Baltic Sea. Russian J. Biol. Invasions 9, 147-154. https://doi.org/10.1134/s207511171802008x.
  • [28] Naumenko, E. N., Telesh, I. V., 2019. Impact of the Invasive Species Cercopagis pengoi Ostroumov, 1891) on the Structural and Functional Organization of Zooplankton in the Vistula Lagoon of the Baltic Sea. Russian J. Biol. Invasions 10, 246-257. https://doi.org/10.1134/S2075111719030081.
  • [29] Ojaveer, H., Simm, M., Lankov, A., 2004. Population dynamics and ecological impact of the non-indigenous Cercopagis pengoi in the Gulf of Riga (Baltic Sea). Hydrobiologia 522, 261-269. https://doi.org/10.1023/B:Hydr.0000029927.91756.41.
  • [30] Pichlová-Ptáčníková, R., Vanderploeg, H. A., 2009. The invasive cladoceran Cercopagis pengoi is a generalist predator capable of feeding on a variety of prey species of different sizes and escape abilities. Fund. Appl. Limnol. 173, 267-279. https://doi.org/10.1127/1863-9135/2009/0173-0267.
  • [31] Pichlová, R., Brandl, Z., 2003. Predatory impact of Leptodora kindtii on zooplankton community in the Slapy Reservoir. Hydrobiologia 504, 177-184. https://doi.org/10.1023/B:HYDR.0000008517.64246.fd.
  • [32] Polunina, J., 2005. Populations of two predatory cladocerans in the Vistula Lagoon — the native Leptodora kindtii and the non-indigenous Cercopagis pengoi. Oceanol. Hydrobiol. St. 34, 249-260.
  • [33] Søndergaard, M., Jeppesen, E., Aaser, H. F., 2000. Neomysis integer in a shallow hypertrophic brackish lake: distribution and predation by three-spined stickleback (Gasterosteus aculeatus). Hydrobiologia 428, 151-159. https://doi.org/10.1023/A:1003923600795.
  • [34] StatSoft. Inc., 2011. STATISTICA (data analysis software system). Version 10. www.statsoft.com.
  • [35] Szlauer, L., 1971. Fishing of lake Arthropoda into light traps. Pol. Arch. Hydrobiol. 18, 81-91.
  • [36] Ten, V. V., 1992. Population structure, life cycle and production characteristics of mysids from the Vistula Bay, Baltic Sea, Ecological fisheries research in the Vistula Lagoon of the Baltic Sea, Trudy AtlantNIRO 64-83, 64-83 [In Russian].
  • [37] Vijverberg, J., 1991. Variability and possible adaptive significance of day-time vertical distribution of Leptodora kindtii (Focke) (Cladocera) in a shallow eutrophic lake. Hybrobiol. Bull. 25, 85-91. https://doi.org/10.1007/BF02259594.
  • [38] Vijverberg, J., Boersma, M., Vandensen, W. L. T., Hoogenboezem, W., Lammens, E. H. R. R., Mooij, W. M., 1990. Seasonal variation in the interactions between piscivorous fish, planktivorous fish and zooplankton in a shallow eutrophic lake. Hydrobiologia 207, 279-286. https://doi.org/10.1007/Bf00041466.
  • [39] Vijverberg, J., Koelewijn, H. P., van Densen, W. L. T., 2005. Effects of predation and food on the population dynamics of the raptorial cladoceran Leptodora kindtii. Limnol. Oceanogr. 50, 455-464. https://doi.org/10.4319/lo.2005.50.2.0455.
  • [40] Vogt, R. J., Matthews, B., Cobb, T. P., Graham, M. D., Leavitt, P. R., 2013. Food web consequences of size-based predation and vertical migration of an invertebrate predator (Leptodora kindtii). Limnol. Oceanogr. 58, 1790-1801. https://doi.org/10.4319/lo.2013.58.5.1790.
  • [41] Watson, M., Power, R., Simpson, S., Munro, J. L., 2002. Low cost light traps for coral reef fishery research and sustainable ornamental fisheries. NAGA 25 (2), 4-7.
  • [42] Wojtal, A., Frankiewicz, P., Zalewski, M., 1999. The role of the invertebrate predator Leptodora kindti in the trophic cascade of a lowland reservoir. Hydrobiologia 416, 215-223. https://doi.org/10.1023/A:1003815520751.
  • [43] Youngbluth, M. J., Gibson, R. A., Holt, J. K., 1983. Use of a simple water column sampler to monitor chemical and biological conditions in shallow waters. Florida Scientist 46, 15-21.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ddbb3ab-38f1-4ec6-9903-bde3f4425794
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.