Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper introduces quantum key distribution-as-a-service (QKDaaS) to address the end-to-end security challenges posed by the involvement of multiple orchestrators in 6G networks. These networks require seamless coordination of processes from endpoints to services, with tiered components supporting data-driven and cross-layer predictive procedures. While multi-party (spanning multiple domains, tenants, and providers) enhances local security through advanced controls, it also complicates the implementation of an end-to-end security framework that is essential for mobile network operators. To address this issue, we propose QKDaaS, a secure platform that leverages a fibre transport network for credential and encryption key distribution in multi-party environments. The solution uses wavelength multiplexing to integrate quantum and classical channels within a single fibre. Both C-band and O-band quantum channels are considered, with classical communication in the C-band. The simulation results show that with the currently available experimental setup and mobile network requirements, secure keys can be generated for distances approaching 100 km in the C-band and 60 km in the O-band case. This means that QKDaaS can be deployed in mobile network operators’ current transport infrastructures.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e155875
Opis fizyczny
Bibliogr. 37 poz., rys., wykr., tab.
Twórcy
autor
- Institute of Physics, Department of Atomic, Molecular and Optical Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5/7, 87-100 Toruń, Poland
autor
- Institute of Telecommunications and Cybersecurity, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland
autor
- Faculty of Electronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
autor
- Institute of Physics, Department of Atomic, Molecular and Optical Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5/7, 87-100 Toruń, Poland
autor
- Department of Telecommunications and Teleinformatics, Faculty of Information and Communication Technology, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Institute of Physics, Department of Atomic, Molecular and Optical Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5/7, 87-100 Toruń, Poland
Bibliografia
- [1] Targets and requirements for 6G - initial E2E architecture. Hexa-x https://hexa-x.eu/wp-content/uploads/2022/03/Hexa-X_D1.3.pdf (2022) (Accessed: 29th September 2022).
- [2] Li, J., Lin, F., Yang, L. & Huang, D. AI service placement for multi-access edge intelligence systems in 6G. IEEE Trans. Netw. Sci. Eng. 10, 1405-1416 (2023). https://doi.org/10.1109/TNSE.2022.3228815.
- [3] Batalla, J. M. et al. Security risk assessment for 5G networks - national perspective. IEEE Wirel. Commun. 27, 16-22 (2020). https://doi.org/10.1109/MWC.001.1900524.
- [4] Kukliński, S., Batalla, J. M. & Pieczerak, J. Dynamic and Multiprovider-Based Resource Infrastructure in the NFV MANO Framework. in IEEE/IFIP Netw. Oper. Manag. Symp. (NOMS) 2023-2024 1-4 (IEEE, 2023). https://doi.org/10.1109/NOMS56928.2023.10154398.
- [5] Lv, P. et al. Edge computing task offloading for environmental perception of autonomous vehicles in 6G networks. IEEE Trans. Netw. Sci. Eng. 10, 1228-1245 (2023). https://doi.org/10.1109/TNSE.2022.3211193.
- [6] Prathiba, S. B. Federated learning empowered computation offloading and resource management in 6G-V2X. IEEE Trans. Netw. Sci. Eng. 9, 3234-3243 (2022). https://doi.org/10.1109/TNSE.2021.3103124.
- [7] Rewal, P., Singh, M., Mishra, D., Pursharthi, K. & Mishra, A. Quantum-safe three-party lattice based authenticated key agreement protocol for mobile devices. J. Inf. Secur. Appl. 75, 103505 (2023). https://doi.org/10.1016/j.jisa.2023.103505.
- [8] Cao, Y. et al. KaaS: Key as a service over quantum key distribution integrated optical networks. IEEE Commun. Mag. 57, 152-159 (2019). https://doi.org/10.1109/MCOM.2019.1701375.
- [9] Townsend, P. D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing. Electron. Lett. 33, 88-90 (1997). https://doi.org/10.1049/el:19970147.
- [10] Eraerds, P., Walenta, N., Legré, M. & Gisin, N. Quantum key dis-tribution and 1 Gbps data encryption over a single fibre. New J. Phys. 12, 063027 (2010). https://doi.org/10.1088/1367-2630/12/6/063027.
- [11] Patel, K. A. et al. Coexistence of high-bit-rate quantum key distribution and data on optical fibre. Phys. Rev. X 2, 041010 (2012). https://10.1103/PhysRevX.2.041010.
- [12] Valivarthi, R. et al. Measurement-device-independent quantum key distribution coexisting with classical communication. Quantum Sci. Technol. 4, 045002 (2019). https://doi.org/10.1088/2058-9565/ab2e62.
- [13] Choi, I., Young, R. J. & Townsend, P. D. Quantum key distribution on a 10Gb/s WDM-PON. Opt. Express 18, 9600-9612 (2010). https://doi.org/10.1364/OE.18.009600.
- [14] Fröhlich, B. et al. Quantum secured gigabit optical access networks. Sci. Rep. 5, 18121 (2016). https://doi.org/10.1038/srep18121.
- [15] Dynes, J. F. et al. Cambridge quantum network. npj Quantum Inf. 5, 101 (2019). https://doi.org/10.1038/s41534-019-0221-4.
- [16] Xia, Y. et al. AI-driven and MEC-empowered confident information coverage hole recovery in 6G-enabled IoT. IEEE Trans. Netw. Sci. Eng. 10, 1256-1269 (2023). https://doi.org/10.1109/TNSE.2022.3154760.
- [17] Exploring QKDAAS: The role of quantum key distribution in as-a-service security models. Barrier Networks https://barriernetworks.squarespace.com/blog/2020/6/12/exploring-qkdaas (2020) (Accessed: 10th July 2025).
- [18] Toshiba Starts Operation of World’s First Quantum Key Distribution Platform Business. Toshiba Digital Solutions Corporation https://www.global.toshiba/ww/company/digitalsolution/news/2022/0328.html (2022) (Accessed: 10th July 2025).
- [19] Raddo, T. R., Rommel, S., Land, V., Okonkwo, C. & Monroy, I. T. Quantum Data Encryption as A Service on Demand: Eindhoven QKD Network Testbed. in IEEE Int. Conf. Transparent Opt. Netw. (ICTON) 1-5 (IEEE, 2019). https://doi.org/10.1109/ICTON.2019.8840238.
- [20] Chapuran, T. E. et al. Optical networking for quantum key distribution and quantum communications. New J. Phys. 11, 105001 (2009). https://doi.org/10.1088/1367-2630/11/10/105001.
- [21] Wang, L.-J. et al. Long-distance copropagation of quantum key distribution and terabit classical optical data channels. Phys. Rev. A 95, 012301 (2017). https://doi.org/10.1103/PhysRevA.95.012301.
- [22] Bennett, C. H. & Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, part 1, 7-11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025.
- [23] Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301-1350 (2009). https://doi.org/10.1103/RevModPhys.81.1301.
- [24] Cai, R. Y. Q. & Scarani, V. Finite-key analysis for practical implementations of quantum key distribution. New J. Phys. 11, 045024 (2009). https://doi.org/10.1088/1367-2630/11/4/045024.
- [25] Kraus, B., Gisin, N. & Renner, R. Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005). https://doi.org/10.1103/PhysRevLett.95.080501.
- [26] Renner, R., Gisin, N. & Kraus, B. Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005). https://doi.org/10.1103/PhysRevA.72.012332.
- [27] Lütkenhaus, N. Quantum key distribution: Theory for application. Appl. Phys. B 69, 395-400 (1999). https://doi.org/10.1007/s003400050825.
- [28] Scarani, V. & Renner, R. Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100, 200501 (2008). https://doi.org/10.1103/PhysRevLett.100.200501.
- [29] Hwang, W.-Y. Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003). https://doi.org/10.1103/PhysRevLett.91.057901.
- [30] Brassard, G., Lütkenhaus, N., Mor, T. & Sanders, B. C. Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330-1333 (2000). https://doi.org/10.1103/PhysRevLett.85.1330.
- [31] Einarsson, G. H. Principles of Lightwave Communications. (Wiley, 1996).
- [32] Beutel, F., Gehring, H., Wolff, M. A., Schuck. C. & Pernice, W. Detector-integrated on-chip QKD receiver for GHz clock rates. npj Quantum Inf. 7, 40 (2021). https://doi.org/10.1038/s41534-021-00373-7.
- [33] Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photonics 7, 210-214 (2013). https://doi.org/10.1038/nphoton.2013.13.
- [34] Fang, Y. Q. et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm. Rev. Sci. Instrum. 91, 083105 (2020). https://doi.org/10.1063/5.0014123.
- [35] Bahrani, S., Razavi, M. & Salehi, J. A. Wavelength assignment in hybrid quantum-classical networks. Sci. Rep. 8, 3456 (2018). https://doi.org/10.1038/s41598-018-21418-6.
- [36] Walenta, N. et al. A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing. New J. Phys. 16, 013047 (2014). https://doi.org/10.1088/1367-2630/16/1/013047.
- [37] Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018). https://doi.org/10.1063/1.5020038.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ddbb112-3426-477b-b655-71550044af5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.