PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantum key distribution-as-a-service for end-to-end security in multi-orchestrated 6G networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper introduces quantum key distribution-as-a-service (QKDaaS) to address the end-to-end security challenges posed by the involvement of multiple orchestrators in 6G networks. These networks require seamless coordination of processes from endpoints to services, with tiered components supporting data-driven and cross-layer predictive procedures. While multi-party (spanning multiple domains, tenants, and providers) enhances local security through advanced controls, it also complicates the implementation of an end-to-end security framework that is essential for mobile network operators. To address this issue, we propose QKDaaS, a secure platform that leverages a fibre transport network for credential and encryption key distribution in multi-party environments. The solution uses wavelength multiplexing to integrate quantum and classical channels within a single fibre. Both C-band and O-band quantum channels are considered, with classical communication in the C-band. The simulation results show that with the currently available experimental setup and mobile network requirements, secure keys can be generated for distances approaching 100 km in the C-band and 60 km in the O-band case. This means that QKDaaS can be deployed in mobile network operators’ current transport infrastructures.
Rocznik
Strony
art. no. e155875
Opis fizyczny
Bibliogr. 37 poz., rys., wykr., tab.
Twórcy
  • Institute of Physics, Department of Atomic, Molecular and Optical Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5/7, 87-100 Toruń, Poland
  • Institute of Telecommunications and Cybersecurity, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland
  • Faculty of Electronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • Institute of Physics, Department of Atomic, Molecular and Optical Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5/7, 87-100 Toruń, Poland
  • Department of Telecommunications and Teleinformatics, Faculty of Information and Communication Technology, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Institute of Physics, Department of Atomic, Molecular and Optical Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5/7, 87-100 Toruń, Poland
Bibliografia
  • [1] Targets and requirements for 6G - initial E2E architecture. Hexa-x https://hexa-x.eu/wp-content/uploads/2022/03/Hexa-X_D1.3.pdf (2022) (Accessed: 29th September 2022).
  • [2] Li, J., Lin, F., Yang, L. & Huang, D. AI service placement for multi-access edge intelligence systems in 6G. IEEE Trans. Netw. Sci. Eng. 10, 1405-1416 (2023). https://doi.org/10.1109/TNSE.2022.3228815.
  • [3] Batalla, J. M. et al. Security risk assessment for 5G networks - national perspective. IEEE Wirel. Commun. 27, 16-22 (2020). https://doi.org/10.1109/MWC.001.1900524.
  • [4] Kukliński, S., Batalla, J. M. & Pieczerak, J. Dynamic and Multiprovider-Based Resource Infrastructure in the NFV MANO Framework. in IEEE/IFIP Netw. Oper. Manag. Symp. (NOMS) 2023-2024 1-4 (IEEE, 2023). https://doi.org/10.1109/NOMS56928.2023.10154398.
  • [5] Lv, P. et al. Edge computing task offloading for environmental perception of autonomous vehicles in 6G networks. IEEE Trans. Netw. Sci. Eng. 10, 1228-1245 (2023). https://doi.org/10.1109/TNSE.2022.3211193.
  • [6] Prathiba, S. B. Federated learning empowered computation offloading and resource management in 6G-V2X. IEEE Trans. Netw. Sci. Eng. 9, 3234-3243 (2022). https://doi.org/10.1109/TNSE.2021.3103124.
  • [7] Rewal, P., Singh, M., Mishra, D., Pursharthi, K. & Mishra, A. Quantum-safe three-party lattice based authenticated key agreement protocol for mobile devices. J. Inf. Secur. Appl. 75, 103505 (2023). https://doi.org/10.1016/j.jisa.2023.103505.
  • [8] Cao, Y. et al. KaaS: Key as a service over quantum key distribution integrated optical networks. IEEE Commun. Mag. 57, 152-159 (2019). https://doi.org/10.1109/MCOM.2019.1701375.
  • [9] Townsend, P. D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing. Electron. Lett. 33, 88-90 (1997). https://doi.org/10.1049/el:19970147.
  • [10] Eraerds, P., Walenta, N., Legré, M. & Gisin, N. Quantum key dis-tribution and 1 Gbps data encryption over a single fibre. New J. Phys. 12, 063027 (2010). https://doi.org/10.1088/1367-2630/12/6/063027.
  • [11] Patel, K. A. et al. Coexistence of high-bit-rate quantum key distribution and data on optical fibre. Phys. Rev. X 2, 041010 (2012). https://10.1103/PhysRevX.2.041010.
  • [12] Valivarthi, R. et al. Measurement-device-independent quantum key distribution coexisting with classical communication. Quantum Sci. Technol. 4, 045002 (2019). https://doi.org/10.1088/2058-9565/ab2e62.
  • [13] Choi, I., Young, R. J. & Townsend, P. D. Quantum key distribution on a 10Gb/s WDM-PON. Opt. Express 18, 9600-9612 (2010). https://doi.org/10.1364/OE.18.009600.
  • [14] Fröhlich, B. et al. Quantum secured gigabit optical access networks. Sci. Rep. 5, 18121 (2016). https://doi.org/10.1038/srep18121.
  • [15] Dynes, J. F. et al. Cambridge quantum network. npj Quantum Inf. 5, 101 (2019). https://doi.org/10.1038/s41534-019-0221-4.
  • [16] Xia, Y. et al. AI-driven and MEC-empowered confident information coverage hole recovery in 6G-enabled IoT. IEEE Trans. Netw. Sci. Eng. 10, 1256-1269 (2023). https://doi.org/10.1109/TNSE.2022.3154760.
  • [17] Exploring QKDAAS: The role of quantum key distribution in as-a-service security models. Barrier Networks https://barriernetworks.squarespace.com/blog/2020/6/12/exploring-qkdaas (2020) (Accessed: 10th July 2025).
  • [18] Toshiba Starts Operation of World’s First Quantum Key Distribution Platform Business. Toshiba Digital Solutions Corporation https://www.global.toshiba/ww/company/digitalsolution/news/2022/0328.html (2022) (Accessed: 10th July 2025).
  • [19] Raddo, T. R., Rommel, S., Land, V., Okonkwo, C. & Monroy, I. T. Quantum Data Encryption as A Service on Demand: Eindhoven QKD Network Testbed. in IEEE Int. Conf. Transparent Opt. Netw. (ICTON) 1-5 (IEEE, 2019). https://doi.org/10.1109/ICTON.2019.8840238.
  • [20] Chapuran, T. E. et al. Optical networking for quantum key distribution and quantum communications. New J. Phys. 11, 105001 (2009). https://doi.org/10.1088/1367-2630/11/10/105001.
  • [21] Wang, L.-J. et al. Long-distance copropagation of quantum key distribution and terabit classical optical data channels. Phys. Rev. A 95, 012301 (2017). https://doi.org/10.1103/PhysRevA.95.012301.
  • [22] Bennett, C. H. & Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, part 1, 7-11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025.
  • [23] Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301-1350 (2009). https://doi.org/10.1103/RevModPhys.81.1301.
  • [24] Cai, R. Y. Q. & Scarani, V. Finite-key analysis for practical implementations of quantum key distribution. New J. Phys. 11, 045024 (2009). https://doi.org/10.1088/1367-2630/11/4/045024.
  • [25] Kraus, B., Gisin, N. & Renner, R. Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005). https://doi.org/10.1103/PhysRevLett.95.080501.
  • [26] Renner, R., Gisin, N. & Kraus, B. Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005). https://doi.org/10.1103/PhysRevA.72.012332.
  • [27] Lütkenhaus, N. Quantum key distribution: Theory for application. Appl. Phys. B 69, 395-400 (1999). https://doi.org/10.1007/s003400050825.
  • [28] Scarani, V. & Renner, R. Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100, 200501 (2008). https://doi.org/10.1103/PhysRevLett.100.200501.
  • [29] Hwang, W.-Y. Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003). https://doi.org/10.1103/PhysRevLett.91.057901.
  • [30] Brassard, G., Lütkenhaus, N., Mor, T. & Sanders, B. C. Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330-1333 (2000). https://doi.org/10.1103/PhysRevLett.85.1330.
  • [31] Einarsson, G. H. Principles of Lightwave Communications. (Wiley, 1996).
  • [32] Beutel, F., Gehring, H., Wolff, M. A., Schuck. C. & Pernice, W. Detector-integrated on-chip QKD receiver for GHz clock rates. npj Quantum Inf. 7, 40 (2021). https://doi.org/10.1038/s41534-021-00373-7.
  • [33] Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photonics 7, 210-214 (2013). https://doi.org/10.1038/nphoton.2013.13.
  • [34] Fang, Y. Q. et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm. Rev. Sci. Instrum. 91, 083105 (2020). https://doi.org/10.1063/5.0014123.
  • [35] Bahrani, S., Razavi, M. & Salehi, J. A. Wavelength assignment in hybrid quantum-classical networks. Sci. Rep. 8, 3456 (2018). https://doi.org/10.1038/s41598-018-21418-6.
  • [36] Walenta, N. et al. A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing. New J. Phys. 16, 013047 (2014). https://doi.org/10.1088/1367-2630/16/1/013047.
  • [37] Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018). https://doi.org/10.1063/1.5020038.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ddbb112-3426-477b-b655-71550044af5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.