PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Power and Energy Optimization of Carbon Based Lithium-Ion Battery from Water Spinach (Ipomoea Aquatica)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, lithium-ion batteries still use electrodes from graphite, which is a natural resource for non-metallic minerals. As a sustainable plan, research on the manufacture of lithium-ion batteries based on biomass electrodes has prospects for commercial development. In this study, carbon stems of water spinach (Ipomoea Aquatica) were used as electrodes on the battery. Water spinach is processed into nanocarbon by hydrothermal method and pyrolysis. The size of the nanocarbon particles from water spinach in this study was 200 mesh resulting from the grinding method. The type of battery made is a bag battery with a size of 8×12 cm by performing variable optimization by using a concentration of 50% LiCl/Li2SO4 electrolytes media, Polyurethane/Polyacrylate binder, and Triethylamine/Non-emulsifier. The highest power and energy values are generated from carbon based lithium-ion batteries from water spinach with LiCl electrolyte media, Polyurethane binder, and Triethylamine emulsion which is 5.404 W and 4.511 W∙h.
Rocznik
Strony
213--223
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
autor
  • Department of Chemical Engineering, Faculty of Engineering, Sriwijaya University, Indralaya 30662, South Sumatra, Indonesia
  • Department of Mechanical Engineering, Faculty of Engineering, Pasundan University, Bandung 40264, West Java, Indonesia
autor
  • Department of Chemical Engineering, Faculty of Engineering, Sriwijaya University, Indralaya 30662, South Sumatra, Indonesia
  • Department of Electrical Engineering, Faculty of Engineering, Sriwijaya University, Indralaya 30662, South Sumatra, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Sriwijaya University, Indralaya 30662, South Sumatra, Indonesia
Bibliografia
  • 1. Abdul Aziz, N.I.H., Mohd Hanafiah, M., Halim, N.H., Fidri, P.A.S. 2020. Phytoremediation of TSS, NH3-N and COD from Sewage Wastewater by Lemna minor L., Salvinia minima, Ipomea aquatica and Centella asiatica. Applied Sciences, 10, 5397.
  • 2. Al-Saadi, M., Olmos, J., Saez-de-Ibarra, A., Van Mierlo, J., Berecibar, M. 2022. Fast Charging Impact on the Lithium-Ion Batteries’ Lifetime and Cost-Effective Battery Sizing in Heavy-Duty Electric Vehicles Applications. Energies, 15, 1278.
  • 3. Balasingam, B., Ahmed, M., Pattipati, K. 2020. Battery Management Systems—Challenges and Some Solutions. Energies, 13, 2825.
  • 4. Beaudet, A., Larouche, F., Amouzegar, K., Bouchard, P., and Zaghib, K. 2020. Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials. Sustainability, 12, 5837.
  • 5. Boh Podgornik, B., Šandrić, S., Kert, M. 2021. Microencapsulation for Functional Textile Coatings with Emphasis on Biodegradability—A Systematic Review. Coatings, 11, 1371.
  • 6. Brückner, L., Frank, J., Elwert, T. 2020. Industrial Recycling of Lithium-Ion Batteries—A Critical Review of Metallurgical Process Routes. Metals, 10, 1107.
  • 7. Caputo, P., Abe, A. A., Loise, V., Porto, M., Calandra, P., Angelico, R., Oliviero Rossi, C. 2020. The Role of Additives in Warm Mix Asphalt Technology: An Insight into Their Mechanisms of Improving an Emerging Technology. Nanomaterials, 10, 1202.
  • 8. Cholewinski, A., Si, P., Uceda, M., Pope, M., Zhao, B. 2021. Polymer Binders: Characterization and Development toward Aqueous Electrode Fabrication for Sustainability. Polymers, 13, 631.
  • 9. Chung, H.-Y., Pan, G.-T., Hong, Z.-Y., Hsu, C.-T., Chong, S., Yang, T. C.-K., Huang, C.-M. 2020. Biomass-Derived Porous Carbons Derived from Soybean Residues for High Performance Solid State Supercapacitors. Molecules, 25, 4050.
  • 10. Cui, Y., Chen, X., Wang, Y., Peng, J., Zhao, L., Du, J., Zhai, M. 2019. Amphoteric Ion Exchange Membranes Prepared by Preirradiation-Induced Emulsion Graft Copolymerization for Vanadium Redox Flow Battery. Polymers, 11, 1482.
  • 11. Doose, S., Mayer, J. K., Michalowski, P., Kwade, A. 2021. Challenges in Ecofriendly Battery Recycling and Closed Material Cycles: A Perspective on Future Lithium Battery Generations. Metals, 11, 291.
  • 12. Fitz, O., Ingenhoven, S., Bischoff, C., Gentischer, H., Birke, K.P., Saracsan, D., Biro, D. 2021. Comparison of Aqueous- and Non-Aqueous-Based Binder Polymers and the Mixing Ratios for Zn//MnO2 Batteries with Mildly Acidic Aqueous Electrolytes. Batteries, 7, 40.
  • 13. Gabbar, H., Othman, A., Abdussami, M. 2021. Review of Battery Management Systems (BMS) Development and Industrial Standards. Technologies, 9, 28.
  • 14. Hamza, M.F., Wei, Y., Althumayri, K., Fouda, A., Hamad, N.A. 2022. Synthesis and Characterization of Functionalized Chitosan Nanoparticles with Pyrimidine Derivative for Enhancing Ion Sorption and Application for Removal of Contaminants. Materials, 15, 4676.
  • 15. Hosseinzadeh, E., Marco, J., Jennings, P. 2017. Electrochemical-Thermal Modelling and Optimisation of Lithium-Ion Battery Design Parameters Using Analysis of Variance. Energies, 10, 1278.
  • 16. Ingried, V.F., Haryati, S., Syarif, N. 2022. Hydrothermal LiTiO2 Cathode and Polyurethane Binder of High Current Lithium Ion Batteries. International Journal on Advanced Science, Engineering and Information Technology, 12, 1032.
  • 17. Jankowiak, C., Zacharopoulos, A., Brandoni, C., Keatley, P., MacArtain, P., Hewitt, N. 2019. The Role of Domestic Integrated Battery Energy Storage Systems for Electricity Network Performance Enhancement. Energies, 12, 3954.
  • 18. Kaliaperumal, M., Dharanendrakumar, M.S., Prasanna, S., Abhishek, K.V., Chidambaram, R.K., Adams, S., Zaghib, K., Reddy, M.V. 2021. Cause and Mitigation of Lithium-Ion Battery Failure—A Review. Materials, 14, 5676.
  • 19. Kigozi, M., Kali, R., Bello, A., Padya, B., Kalu-Uka, G. M., Wasswa, J., Jain, P. K., Onwualu, P. A., Dzade, N.Y. 2020. Modified Activation Process for Supercapacitor Electrode Materials from African Maize Cob. Materials, 13, 5412.
  • 20. Kim, H.-J., Krishna, T., Zeb, K., Rajangam, V., Gopi, C. V. V. M., Sambasivam, S., Raghavendra, K. V. G., and Obaidat, I. M. 2020. A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques. Electronics, 9, 1161.
  • 21. Kota, A., Kum, L.W., Vallurupalli, K., Gogia, A., Neidhard-Doll, A.T., Chodavarapu, V.P. 2022. Highly Flexible Stencil Printed Alkaline Ag2O-Zn Battery for Wearable Electronics. Batteries, 8, 74.
  • 22. Kuganathan, N. 2022. DFT Modelling of Li6SiO-4Cl2 Electrolyte Material for Li-Ion Batteries. Batteries, 8, 137.
  • 23. Lamb, J.J., Burheim, O.S. 2021. Lithium-Ion Capacitors: A Review of Design and Active Materials. Energies, 14, 979.
  • 24. Lang, J., Liu, K., Jin, Y., Long, Y., Qi, L., Wu, H., Cui, Y. 2020. A molten battery consisting of Li metal anode, AlCl3-LiCl cathode and solid electrolyte. Energy Storage Materials, 24, 412–416.
  • 25. Lee, K.-C., Lim, M.S.W., Hong, Z.-Y., Chong, S., Tiong, T.J., Pan, G.-T., Huang, C.-M. 2021. Coconut Shell-Derived Activated Carbon for High-Performance Solid-State Supercapacitors. Energies, 14, 4546.
  • 26. Lemian, D., Bode, F. 2022. Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review. Energies, 15, 5683.
  • 27. Li, D., Yang, D., Li, L., Wang, L., Wang, K. 2022. Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries. Energies, 15, 6665.
  • 28. Liang, J.-Y., Lee, Y.-L., Mao, S.-W., Tsai, M.-D. 2021. Design of an Integrated Heat Dissipation Mechanism for a Quad Transmit Receive Module of Array Radar. Applied Sciences, 11, 7054.
  • 29. Lin, X., Xu, Y., Wu, J., Huang, J. 2022. Bio-inspired hierarchical nanoporous carbon derived from water spinach for high-performance supercapacitor electrode materials. Nanoscale Advances, 4, 1445–1454.
  • 30. Lippke, M., Meister, J., Schilde, C., Kwade, A. 2022. Preheating of Lithium-Ion Battery Electrodes as Basis for Heated Calendering—A Numerical Approach. Processes, 10, 1667.
  • 31. Liu, J., Li, P., Li, F., Liu, Z., Xu, X., Liu, J. 2022. Galvanic Replacement Preparation of Spindle-Structured Sb@C@NC as Anode for Superior Lithium-Ion Storage. Batteries, 8, 245.
  • 32. Liu, L., Niu, J., Wu, J.-Y. 2021. Preparation of Stable Phase Change Material Emulsions for Thermal Energy Storage and Thermal Management Applications: A Review. Materials, 15, 121.
  • 33. Ma, T., Liu, L., Zhou, W., Chen, L., Christie, P. 2019. Effects of Phthalate Esters on Ipomoea aquatica Forsk. Seedlings and the Soil Microbial Community Structure under Different Soil Conditions. International Journal of Environmental Research and Public Health, 16, 3489.
  • 34. Mevawalla, A., Panchal, S., Tran, M.-K., Fowler, M., Fraser, R. 2020. Mathematical Heat Transfer Modeling and Experimental Validation of Lithium-Ion Battery Considering: Tab and Surface Temperature, Separator, Electrolyte Resistance, Anode-Cathode Irreversible and Reversible Heat. Batteries, 6, 61.
  • 35. Mo, C., Zhang, G., Yang, X., Wu, X., Li, X. 2022. A Battery Thermal Management System Coupling High-Stable Phase Change Material Module with Internal Liquid Cooling. Energies, 15, 5863.
  • 36. Nazhipkyzy, M., Maltay, A.B., Askaruly, K., Assylkhanova, D.D., Seitkazinova, A.R., Mansurov, Z.A. 2022. Biomass-Derived Porous Carbon Materials for Li-Ion Battery. Nanomaterials, 12, 3710.
  • 37. Nazhipkyzy, M., Yeleuov, M., Sultakhan, S.T., Maltay, A.B., Zhaparova, A.A., Assylkhanova, D. D., Nemkayeva, R.R. 2022. Electrochemical Performance of Chemically Activated Carbons from Sawdust as Supercapacitor Electrodes. Nanomaterials, 12, 3391.
  • 38. Norjeli, M.F., Tamchek, N., Osman, Z., Mohd Noor, I.S., Kufian, M.Z., Ghazali, M.I.B.M. 2022. Additive Manufacturing Polyurethane Acrylate via Stereolithography for 3D Structure Polymer Electrolyte Application. Gels, 8, 589.
  • 39. Park, J., Yoo, D., Moon, J., Yoon, J., Park, J., Lee, S., Lee, D., Kim, C. 2021. Reliability-Based Robust Design Optimization of Lithium-Ion Battery Cells for Maximizing the Energy Density by Increasing Reliability and Robustness. Energies, 14, 6236.
  • 40. Paul, S., Rahman, M. A., Sharif, S. Bin, Kim, J.-H., Siddiqui, S.-E.-T., Hossain, M.A.M. 2022. TiO2 as an Anode of High-Performance Lithium-Ion Batteries: A Comprehensive Review towards Practical Application. Nanomaterials, 12, 2034.
  • 41. Peters, J., Peña Cruz, A., Weil, M. 2019. Exploring the Economic Potential of Sodium-Ion Batteries. Batteries, 5, 10.
  • 42. Pigłowska, M., Kurc, B., Galiński, M., Fuć, P., Kamińska, M., Szymlet, N., Daszkiewicz, P. 2021. Challenges for Safe Electrolytes Applied in Lithium-Ion Cells—A Review. Materials, 14, 6783.
  • 43. Quintal, F. 2022. Energy Monitoring Technologies. Energies, 15, 5820.
  • 44. Reddy, M. V., Mauger, A., Julien, C. M., Paolella, A., Zaghib, K. 2020. Brief History of Early Lithium-Battery Development. Materials, 13, 1884.
  • 45. Samieian, M.A., Hales, A., Patel, Y. 2022. A Novel Experimental Technique for Use in Fast Parameterisation of Equivalent Circuit Models for Lithium-Ion Batteries. Batteries, 8, 125.
  • 46. She, Y., Tang, B., Li, D., Tang, X., Qiu, J., Shang, Z., Hu, W. 2018. Mixed Nickel-Cobalt-Molybdenum Metal Oxide Nanosheet Arrays for Hybrid Supercapacitor Applications. Coatings, 8, 340.
  • 47. Tao, J., Wang, J., Zheng, X., Jia, A., Zou, M., Zhang, J., Tao, X. 2022. Effects of Tetracycline and Copper on Water Spinach Growth and Soil Bacterial Community. Processes, 10, 1135.
  • 48. Tran, M.-K., Cunanan, C., Panchal, S., Fraser, R., Fowler, M. 2021. Investigation of Individual Cells Replacement Concept in Lithium-Ion Battery Packs with Analysis on Economic Feasibility and Pack Design Requirements. Processes, 9, 2263.
  • 49. Tsai, P.-Y., Chen, T.-E., Lee, Y.-L. 2018. Development and Characterization of Anticorrosion and Antifriction Properties for High Performance Polyurethane/Graphene Composite Coatings. Coatings, 8, 250.
  • 50. Uddin, M.M., Zakeel, M.C.M., Zavahir, J.S., Marikar, F.M.M.T., Jahan, I. 2021. Heavy Metal Accumulation in Rice and Aquatic Plants Used as Human Food: A General Review. Toxics, 9, 360.
  • 51. Vieceli, N., Reinhardt, N., Ekberg, C., Petranikova, M. 2020. Optimization of Manganese Recovery from a Solution Based on Lithium-Ion Batteries by Solvent Extraction with D2EHPA. Metals, 11, 54.
  • 52. Viruega Sevilla, D., Francisco López, A., Bello Bugallo, P. 2022. The Role of a Hazardous Waste Intermediate Management Plant in the Circularity of Products. Sustainability, 14, 1241.
  • 53. Volkov, F.S., Eliseeva, S.N., Kamenskii, M.A., Volkov, A.I., Tolstopjatova, E.G., Glumov, O. V., Fu, L., Kondratiev, V.V. 2022. Vanadium Oxide-Poly(3,4-ethylenedioxythiophene) Nanocomposite as High-Performance Cathode for Aqueous Zn-Ion Batteries: The Structural and Electrochemical Characterization. Nanomaterials, 12, 3896.
  • 54. Vongdala, N., Tran, H.-D., Xuan, T., Teschke, R., Khanh, T. 2018. Heavy Metal Accumulation in Water, Soil, and Plants of Municipal Solid Waste Landfill in Vientiane, Laos. International Journal of Environmental Research and Public Health, 16, 22.
  • 55. Wang, S., Cheng, Y., Wang, R., Sun, J., Gao, L. 2014. Highly Thermal Conductive Copper Nanowire Composites with Ultralow Loading: Toward Applications as Thermal Interface Materials. ACS Applied Materials & Interfaces, 6, 6481–6486.
  • 56. Weshahy, A.R., Sakr, A.K., Gouda, A.A., Atia, B.M., Somaily, H.H., Hanfi, M.Y., Sayyed, M.I., El Sheikh, R., El-Sheikh, E.M., Radwan, H.A., Cheira, M.F., Gado, M.A. 2022. Selective Recovery of Cadmium, Cobalt, and Nickel from Spent Ni–Cd Batteries Using Adogen® 464 and Mesoporous Silica Derivatives. International Journal of Molecular Sciences, 23, 8677.
  • 57. Wu, H., Yang, N., Tang, Y., Jiang, J.-C., Huang, A.-C. 2022. Thermal Stability Evaluation of T152 Emulsifier on the Modification Influence of Fireworks Propellant. Processes, 10, 1606.
  • 58. Yang, K., Tang, Y., Zhang, Z. 2021. Parameter Identification and State-of-Charge Estimation for Lithium-Ion Batteries Using Separated Time Scales and Extended Kalman Filter. Energies, 14, 1054.
  • 59. Yu, C.-H., Wang, S.-L., Tongsiri, P., Cheng, M.-P., Lai, H.-Y. 2018. Effects of Poultry-Litter Biochar on Soil Properties and Growth of Water Spinach (Ipomoea aquatica Forsk.). Sustainability, 10, 2536.
  • 60. Yuca, N., Kalafat, I., Guney, E., Cetin, B., Taskin, O.S. 2022. Self-Healing Systems in Silicon Anodes for Li-Ion Batteries. Materials, 15, 2392.
  • 61. Zaheer, I.E., Ali, S., Saleem, M.H., Noor, I., El-Esawi, M.A., Hayat, K., Rizwan, M., Abbas, Z., El-Sheikh, M.A., Alyemeni, M.N., Wijaya, L. 2020. Iron–Lysine Mediated Alleviation of Chromium Toxicity in Spinach (Spinacia oleracea L.) Plants in Relation to Morpho-Physiological Traits and Iron Uptake When Irrigated with Tannery Wastewater. Sustainability, 12, 6690.
  • 62. Zhang, H., Guo, Y., Meng, F. 2022. Metal Oxide Semiconductor Sensors for Triethylamine Detection: Sensing Performance and Improvements. Chemosensors, 10, 231.
  • 63. Zhao, Y., Pohl, O., Bhatt, A.I., Collis, G.E., Mahon, P.J., Rüther, T., Hollenkamp, A.F. 2021. A Review on Battery Market Trends, Second-Life Reuse, and Recycling. Sustainable Chemistry, 2, 167–205.
  • 64. Zhou, W., Lu, Q., Zheng, Y. 2022. Review on the Selection of Health Indicator for Lithium Ion Batteries. Machines, 10, 512.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5dc1160b-6216-4506-b677-e671d1b3ae44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.