PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental research on separation efficiency of aerosol particles in vortex tube separators with electric field

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A comparative analysis of filtration performance of tangential and axial inlet reverse-flow cyclone separators and vortex tube separators is presented. The study showed that vortex tube separators are characterized by a quality factor q several time higher than tangential inlet reverse-flow cyclone separators. The cyclone separators yield low separation efficiency and low filtration performance at low air flow rates at low air volumes aspired by the engine at low speed. One of the well-known and not commonly used methods to improve separation efficiency is to apply electric field. An original design of a vortex tube separator with insulators generating electric field in the area of aerosol flow is presented. High voltage was applied to the cyclone separator housing and its swirl vane. A special method and test conditions were developed for cyclone separators with electric field. Separation efficiency, filtration performance and pressure drop across the cyclone separator in two different variants were determined. The tests were carried out at five inlet velocity of cyclones υ0 = 1.75; 3.5; 7.0; 10.5; 14 m/s at an extraction rate of m0 = 10%, and at an average dust concentration in the inlet air of s = 1 g/m3. Using the electric field in the area of a swirling aerosol stream resulted in an increase (over 12% – φ c = 96.3%) in separation efficiency at inlet velocity of cyclone ranging from 1.75 to 3.5 m/s. An increase in separation efficiency at other inlet velocity of cyclone is minor and does not exceed 3‒4%.
Rocznik
Strony
503--516
Opis fizyczny
Bibliogr. 64 poz., rys.
Twórcy
autor
  • Military University of Technology, 2 Gen. Sylwestra Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] J. Warych, The cleaning of gases: processes and equipment, WNT Warsaw, 1998 (in Polish).
  • [2] Dust protection device Pall Centrisep® for helicopters type Mi-17/Mi-8MT, including various modifications, [Online] Available: http://www.pall.com/pdfs/Aerospace-Defense-Marine/AEMI17SRU.pdf. [in Russian]
  • [3] [Online] Available: http://www.pall.com/main/aerospace-defense-marine/products.page?pt=Cleaners&tab=1.
  • [4] AS332/EC725 Super Puma/Cougar Helicopter PUREair System, Data Sheet, [Online] Available: http://www.pall.com/pdfs/Aerospace-Defense-Marine/AEAS332EN.pdf.
  • [5] Cummins Direct Flow by Fleetguard, [Online] Available: www.cumminsfiltration.com.
  • [6] T. Dziubak, “The assessment of the possibilities of improvement of the extraction evenness, in multicyclone dedusters fitted in special vehicles”, Combustion Engines. 4(151), 34‒42 (2012).
  • [7] T. Dziubak, “Inlet air filtration in internal combustion engines”, Military University of Technology. Warsaw, 2012.
  • [8] T. Grafe, M. Gogins, M. Barris, J. Schaefer, and R. Canepa, “Nanofibers in Filtration Applications in Transportation”. Filtration 2001 International Conference and Exposition, Chicago, USA, 2001.
  • [9] MANN+HUMMEL PicoFlex®. The new compact air cleaner for your highest requirements. [Online] Available: www.mann-hummel.com.
  • [10] Cenrtisep Air Cleaner. PALL Corporation, USA 2004.
  • [11] T. Dziubak, “The effects of dust extraction on multi-cyclone and non-woven fabric panel filter performance in the air filters used in special vehicles”, Eksploatacja i Niezawodnosc – Maintenance and Reliability 18(3), 348‒357 (2016).
  • [12] T. Dziubak, “Modification of returnable cyclone with a tangent inlet construction”, Bulletin of the Military University of Technology. Warsaw, 55(2), 279‒301 (2006).
  • [13] T. Dziubak, “The problems of the air filtration in the vehicle engines exploitated in large pollution conditions”, ZEM Polish Academy of Sciences 4(124), 181‒197 (2000).
  • [14] T. Dziubak, “Experimental research of axial cyclones of combustion engines air filters”, Bulletin of the Military University of Technology, Warsaw 62(2), 201‒217 (2013).
  • [15] T. Jaroszczyk and T. Ptak, “Experimental Study of Aerosol Separation Using a Minicyclone”, 10th Annual Powder and Bulk Solids Conference. USA, 1985.
  • [16] B. Karwat, R. Machnik, J. Niedźwiedzki, and M. Nogaj, “Selecting operating parameters of an electrostatic precipitator decreasing emission of solid fuels fly ashes”, Eksploatacja i Niezawodnosc – Maintenance and Reliability 20(3), 495‒501 (2018).
  • [17] B. Karwat, M. Nocuń, R. Machnik, and J. Niedźwiedzki, “Modelling and study the effect of selected design features for the operating parameters of industrial electrostatic precipitators”, Eksploatacja i Niezawodnosc – Maintenance and Reliability 18(3), 325‒332 (2016).
  • [18] R. Machnik, B. Karwat, M. Nocuń, and J. Niedźwiedzki, „Wpływ fizykochemicznych właściwości popiołów lotnych ze spalania węgli na proces elektrostatycznego odpylania spalin”, Przemysł Chemiczny 94(9), 1530‒1533 (2015).
  • [19] W. Matysiak, T. Tański, and M. Zaborowska, “Manufacturing process and characterization of electrospun PVP/ZnO NPs nanofibers”, Bull. Pol. Ac.: Tech. 67(2), 193‒200 (2019).
  • [20] A.-M. Azad, M. Noibi, and M. Ramachandran, “Fabrication and characterization of 1-D alumina (Al2O3) nanofibers in an electric field”, Bull. Pol. Ac.: Tech. 55(2), 195‒201 (2007).
  • [21] A. Haider. S. Haider, and I-K. Kang, “A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology”, Arabian J. Chem. 11, 1165–1188 (2018).
  • [22] T.A. Kowalewski, S. Blonski, and S. Barral, “Experiments and modeling of electrospinning process”, Bull. Pol. Ac.: Tech. 53(4), 385–394 (2005).
  • [23] N. Bojdo and A. Filippone, “A comparative study of helicopter engine air particle separation technologies”. The University of Manchester, 2012.
  • [24] J. Wang, S.C. Kim, and D.Y.H. Pui, “Figure of Merit of Composite Filters with Micrometer and Nanometer Fibers”, Aerosol Sci. Technol. 42, 722‒728 (2008).
  • [25] M. Wasilewski and L.S. Brar, “Effect of the inlet duct angle on the performance of cyclone separators”, Sep. Purif. Technol. 213, 19‒33 (2019).
  • [26] H. Zhou, Z. Hu, Q. Zhang, Q. Wang, and X. Lv, “Numerical study on gas-solid flow characteristics of ultra-light particles in a cyclone separator”, Powder Technol. 344, 784‒796 (2019).
  • [27] O.R. Nassaj, D. Toghraie, and M. Afrand, “Effects of multi inlet guide channels on the performance of a cyclone separator”, Powder Technol. 356, 353‒372 (2019).
  • [28] B. Zhao and Y. Su, “Particle size cut performance of aerodynamic cyclone separators: Generalized modeling and characterization by correlating global cyclone dimensions”, J. Aerosol Sci. 120, 1‒11, (2018).
  • [29] K. Elsayed, “Optimization of the cyclone separator geometry for minimum pressure drop using Co-Kriging”, Powder Technol. 269, 409‒424 (2015).
  • [30] K.W. Chu, B. Wang, D.L. Xu, Y.X. Chen, and A.B. Yu, “CFD-DEM simulation of the gas–solid flow in a cyclone separator”, Chem. Eng. Sci. 66(5), 834‒847 (2011).
  • [31] T. Dziubak, L. Bąkała, M. Karczewski, and M. Tomaszewski, “Numerical research on vortex tube separator for special vehicle engine inlet air filter”, Sep. Purif. Technol. 237, 116463 (2020)
  • [32] N. Bojdo and A. Filippone, “A Simple Model to Assess the Role of Dust Composition and Size on Deposition in Rotorcraft Engines”, Aerospace 6(44), 1‒26 (2019).
  • [33] A. Filippone and N. Bojdo, “Turboshaft engine air particle separation”, Prog. Aerosp. Sci. 46, 224‒245 (2010).
  • [34] C.J. Tsai, S.C. Chen, R. Przekop, and A. Moskal, “Study of an Axial Flow Cyclone to Remove Nanoparticles in Vacuum”, Environ. Sci. Technol. 41, 1689‒1695 (2007).
  • [35] P.A. Funk, G.A. Holt, and D.P. Whitelock, “Novel cyclone empirical pressure drop and emissions with heterogeneous particulate”, J. Aerosol Sci. 74, 26‒35 (2014).
  • [36] Z. Ji, Z. Xiong, X. Wu, H. Chen, and H. Wu, “Experimental investigations on a cyclone separator performance at an extremely low particle concentration”, Powder Technol. 191, 254‒259 (2009).
  • [37] Y. Jo, Ch. Tien, and M.B. Ray, “Development of a post cyclone to improve the efficiency of reverse flow cyclones”, Powder Technol. 113, 97‒108 (2000).
  • [38] H.T. Kim, Y. Zhu, W.C. Hinds, and K.W. Lee, “Experimental study of small virtual cyclones as particle concentrators”, J. Aerosol Sci. 5(33), 721‒733 (2002).
  • [39] K.S. Lim, H.S. Kim, and K.W. Lee, “Characteristics of the collection effciency for a cyclone with different vortex finder shapes”, J. Aerosol Sci. 6, 743‒754 (2004).
  • [40] G.B. Sakura and A.Y.T. Leung, “Experimental Study of Particle Collection Efficiency of Cylindrical Inlet Type Cyclone Separator”, Int. J. Environ. Sci. Develop. 3, 160‒164 (2015).
  • [41] T. Dziubak, “Performance characteristics of air intake pleated panel filters for internal combustion engines in a two-stage configuration”, Aerosol Sci. Technol. 52(11), 1293‒1307 (2018).
  • [42] T. Dziubak and S. Szwedkowicz, “Operating properties of non-woven fabric panel filters for internal combustion engine inlet air in single and two-stage filtration systems”, Eksploatacja i Niezawodnosc – Maintenance and Reliability 17(4), 519‒527 (2015).
  • [43] A.G. Titov, “The Impact of re-entrainment on the electrocyclone effectiveness”, Sep. Purif. Technol. 156, 795‒802 (2015).
  • [44] J. Li and W. Cai, “Study of cut diameter of solid-gas separation in cyclone with electrostatic excitation”, J. Electrostat. 60, 15‒23 (2004).
  • [45] J. Li and W. Cai, “Theory and Application of cyclone with impulse electrostatic excitation for cleaning molecular gas”, J. Electrostat. 64, 254‒258 (2006).
  • [46] V.S. Aslamova, M.I. Arshinskii, N.A. Bragin, and A.A. Zhabei, “Study of a direct-flow cyclone with intermediate dust collection”, Chem. Pet. Eng. 45, 372‒375 (2009).
  • [47] G.Y. Lin, L.T. Cuc, W. Lu, C.J. Tsai H.M. Chein, and F.T. Chang, “High-efficiency wet electrocyclone for removing fine and nano sized particles”, Sep. Purif. Technol. 114, 99‒107 (2013).
  • [48] J.P. Zhang, Z.T. Zha, P. Che, W.G. Pan, D.M. Hu, and F.Q. Li, “Theoretical study on submicron particle escape reduced by magnetic. confinement effect in low inlet speed electrostatic cyclone precipitators”, Powder Technol. 339, 1005‒1011 (2018).
  • [49] L. Horne, “Electro cyclone technology: A media-free option for engine cleaning?”, Filtr. Sep. 2, 12‒15 (2006).
  • [50] A.G. Titov, Z.R. Gil’vanova, N.V. Inyushkin, S.A. Ermakov, I.P. Shchelchkov, A.I. Aitova, M.G. Man’kov, N.A. Tokareva, and S.A. Perfilov, “Efficiency of Electrostatic Cyclone Operation”, Chem. Pet. Eng. 49, 655‒659 (2014).
  • [51] H. Yoshida, K. Fukui, W. Pratarn, and W. Tanthapanichakoon, “Particle separation performance by use of electrical hydro-cyclone”, Sep. Purif. Technol. 50, 330‒335 (2006).
  • [52] C.J. Chen, “Enhanced collection efficiency for cyclone by applying an external electric field”, Sep. Sci. Technol. 36, 499‒511 (2001).
  • [53] P.W. Dietz, “Electrostatically enhanced cyclone separators”, Powder Technol. 31, 211‒216 (1982).
  • [54] J. Pluciński, L. Gradoń, and J. Nowicki, “Collection of aerosol particles in a cyclone with an external electric field”, J. Aerosol Sci. 20(6), 695‒700 (1989).
  • [55] L. Gradoń, H. Luckner, A. Podgórski, and Z. Wertejuk, “Separation of neutral and charged aerosol particles in cyclones with external electric field”, J. Aerosol Sci. 29, 927‒928 (1998).
  • [56] H. Amjadsoroudi, F.G. Shahna, A. Bahrami, and J. Fardmal, “Assessing Electrocyclone Performance in Collecting Smaller, than 1 μm Silica Airborne Particles”, Iran. J. Health Environ. 6, 45‒53 (2013).
  • [57] R.R. Boericke, W.G. Giles, P.W. Dietz, G.A. Kallio, and J.T. Kuo, “Electrocyclone for High-Temperature, High-Pressure Dust Removal”, J. Energy. 1, 43–49 (1983).
  • [58] L. Gradoń, H. Luckner, A. Podgorski, and Z. Werterjuk, “Separation of neutral and charged aerosol particles in cyclones with external electric field”, J. Aerosol Sci. 29, 927–928 (1998).
  • [59] P. Kabsch, Dust extraction and dust collectors, WNT, Warsaw 1992 (in Polish).
  • [60] K.S. Lim, H.S. Kim, and K.W. Lee, “Comparative performances of conventional cyclones and a double cyclone with and without an electric field”, J. Aerosol Sci. 35, 103–116 (2004).
  • [61] K.S. Lim, K.W. Lee, and M.R Kuhlman, “An Experimental Study of the Performance Factors Affecting Particle Collection Efficiency of the Electrocyclone”, Aerosol Sci. Technol. 35, 969‒977 (2001).
  • [62] J.S. Shrimpton and R.I. Crane, “Small electrocyclone performance”, Chem. Eng.Technol. 24, 951‒955 (2001).
  • [63] A. Jaworek, A. Krupa, and T. Czech, “Modern electrostatic devices and methods for exhaust gas cleaning: a brief review”, J. Electrostat. 65, 133‒155 (2007).
  • [64] T. Dziubak, Report from the research work. No PBN/03‒453/2016/WAT „Prototype vortex tube separator tests”. Order, LASER-STAR Sp. z o.o. Sp. k. Toruń. WAT Warsaw, 2016.
Uwagi
EN
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5db9342f-b09d-4760-a6d9-538830b704a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.