Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article has two outreach aims. It concisely summarizes the main research and technical efforts in the EC H2020 ARIES Integrating Activity – Accelerator Research and Innovation for European Science and Society [1] during the period 2017/2018. ARIES is a continuation of CARE, TIARA and EuCARD projects [2-3]. The article also tries to show these results as an encouragement for local physics and engineering, research and technical communities to participate actively in such important European projects. According to the author’s opinion this participation may be much bigger [4-27]. All the needed components to participate – human, material and infrastructural are there [4,7]. So why the results are not satisfying as they should be? The major research subjects of ARIES are: new methods of particles acceleration including laser, plasma and particle beam interactions, new materials and accelerator components, building new generations of accelerators, energy efficiency and management of large accelerator systems, innovative superconducting magnets, high field and ultra-high gradient magnets, cost lowering, system miniaturization, promotion of innovation originating from accelerator research, industrial applications, and societal implications. Two institutions from Poland participate in ARIES – these are Warsaw University of Technology and Institute of Nuclear Chemistry and Technology in Warsaw. There are not present some of the key institutes active in accelerator technology in Poland. Let this article be a small contribution why Poland, a country of such big research potential, contributes so modestly to the European accelerator infrastructural projects? The article bases on public and internal documents of ARIES project, including the EU Grant Agreement and P1 report. The views presented in the paper are only by the author and not necessarily by the ARIES.
Słowa kluczowe
particle accelerators
accelerator science and technology
novel accelerators
high field magnets
superconducting magnets
RF particle guns
particle detectors
high energy physics
applications of particle accelerators
laser and plasma accelerators
community and social implications of ARIES
EC Integrating Introduction
Rocznik
Tom
Strony
119--124
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- Institute of Electronic Systems, Warsaw University of Technology, Poland
Bibliografia
- [1] ARIES – Accelerator Research and Innovation for European Science and Society [https://aries.web.cern.ch/].
- [2] TIARA – Test Infrastructure and Accelerator Research Area – Preparatory Phase [http://www.eu-tiara.eu/].
- [3] EuCARD2 – Enhanced European Coordination for Accelerator Research and Development [http://eucard2.web.cern.ch/].
- [4] R.S. Romaniuk, Development of accelerator technology in Poland – Impact of European CARE and EuCARD projects, Electronics and Telecommunications Quarterly, 2008, vol.54, no.3, pp. 239-251.
- [5] R.S. Romaniuk, Accelerator Science and Technology in Europe: EuCARD 2012, International Journal of Electronics and Telecommunications, 2012, vol.58, no.4, pp.327-334, doi: 10.2478/v10177-012-0045-z
- [6] R.S. Romaniuk, EuCARD 2010 Accelerator Technology in Europe, International Journal of Electronics and Telecommunications, 2010, vol.56, no.4, pp.485-488.
- [7] R.S. Romaniuk, Accelerators for Society: succession of European infrastructural projects: CARE, EuCARD, TIARA EuCARD2, Proc.SPIE, 8903, art.no.890320, 2013, doi: 10.1117/12.2035376.
- [8] R.S. Romaniuk, EuCARD2: enhanced accelerator research and development in Europe, Proc.SPIE, 8903, art.no.89031Q, 2013, doi:10.1117/12.2035218.
- [9] T. Czarski, K.T. Poźniak, R.S .Romaniuk, S. Simrock, TESLA cavity modelling and digital implementation with FPGA technology solution for control system development, Proc.SPIE, 5484, pp. 111-129, 2004.
- [10] T. Czarski, K.T. Poźniak, R.S. Romaniuk, S. Simrock, Cavity control system advanced modelling and simulations for TESLA linear accelerator and free electron laser, Proc.SPIE, 5484, pp. 69-87, 2004.
- [11] W.M. Zabołotny, P. Roszkowski, K. Kierzkowski, K.T .Poźniak, et.al., Distributed embedded PC based control and data acquisition system for TESLA cavity controller and simulator, Proc.SPIE 5484, pp. 171-179, 2004.
- [12] K.T. Poźniak, T. Czarski, R.S. Romaniuk, Document FPGA based cavity simulator and controller for TESLA Test Facility, Proc.SPIE 5775, pp. 9-21, 2005.
- [13] P. Pucyk, T. Jeżyński, W. Koprek, et.al., DOOCS server and client application for FPGA based TESLA cavity controller and simulator, Proc.SPIE 5775, pp. 52-60, 2005.
- [14] W. Giergusiewicz, W. Jałmużna, K.T. Poźniak, et.al., Low latency control board for LLRF system - SIMCON 3.1, Proc.SPIE, 5948, art.no. 59482C, 2005.
- [15] K.T. Poźniak, T. Czarski, R.S. Romaniuk, Functional analysis of DSP blocks in FPGA chips for application in TESLA LLRF system, Proc.SPIE, 5484, pp. 130-138, 2004.
- [16] K.T.Poźniak, R.S. Romaniuk, T. Czarski, et.al., FPGA and optical network based LLRF distributed control system for TESLA-XFEL Linear Accelerator, Proc.SPIE 5775, pp 69-77, 2005.
- [17] Pozniak, K.T., Czarski, T., Romaniuk, R.S., FPGA based cavity simulator and controller for TESLA Test Facility, Proc.SPIE 5775, 02, pp. 9-21, 2005.
- [18] Mukherjee, B., Simrock, S., Khachan, et.al., Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons, Radiation Protection Dosimetry, 126(1-4), pp. 256-260, 2007.
- [19] Ablyazimov, T., Abuhoza, A., Adak, R.P., et.al., Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR, European Physical Journal A, 53(3),60, 2017.
- [20] Chatrchyan, S., Khachatryan, V., Sirunyan, A.M., et.al., Time reconstruction and performance of the CMS electromagnetic calorimeter, Journal of Instrumentation, 5(3),T03011, 2010.
- [21] Czarski, T., Pozniak, K., Romaniuk, R., Simrock, S., TESLA cavity modeling and digital implementation with FPGA technology solution for control system development, Proc.SPIE, 5484, pp. 111-129, 2004.
- [22] Czarski, T., Romaniuk, R., Poźniak, K., Simrock, S., Cavity control system advanced modeling and simulations for TESLA linear accelerator and free electron laser, Proc.SPIE 5484, pp. 69-87, 2004.
- [23] Zabolotny, W.M., Roszkowski, P., Kierzkowski, K., et.al., Distributed embedded PC based control and data acquisition system for TESLA cavity controller and simulator, Proc.SPIE 5484, pp.171-179, 2004.
- [24] Pozniak, K.T., Czarski, T., Romaniuk, R.S., Functional analysis of DSP blocks in FPGA chips for application in TESLA LLRF system, Proc.SPIE 5484, pp. 130-138, 2004.
- [25] Chatrchyan, S., Khachatryan, V., Sirunyan, A.M.,et.al., Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams, Journal of Instrumentation, 5(3),T03002, 2010.
- [26] Chatrchyan, S., Khachatryan, V., Sirunyan, A.M., et.al., Measurement of the muon stopping power in lead tungstate, Journal of Instrumentation, 5(3),P03007, 2010.
- [27] Romaniuk, R.S., Pozniak, K.T., Metrological aspects of accelerator technology and high energy physics experiments, Measurement Science and Technology, 18(8), E01, 2007.
- [28] Newsletter Accelerating News [http://www.acceleratingnews. eu/].
- [29] EuPRAXIA – Compact European Plasma Accelerator with superior beam quality [http://www.eupraxia-project.eu/].
- [30] CERN AWAKE – Advanced Wakefield Experiment [http://awake.web.cern.ch/awake/].
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5db06b69-d846-401c-8561-4e759b9516bc