PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pollutant Removal in Wastewater from Anaerobic Digesters by Water Lettuce (Pistia stratiotes L.) at Both Still-Water and Running-Water Stages

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research investigated the effectiveness of water lettuce (WL; Pistia stratiotes L.) in improving the quality of wastewater from biogas systems. Two treatments were designed, one without WL and the other with WL. First, WL were raised in containers that had 15 L of wastewater with an initial ammonium concentration of about 15 mg/L at the still-water stage (days 0–7). Then, at the running-water stage (days 10–22), wastewater with a targeted NH4+-N concentration of about 15 mg/L in a 5-L tank was gravitationally delivered continually into terraced Styrofoam containers designed as ponds 1, 2 and 3. Water samples were collected on days 0, 3, 7, 10, 13, 16, 19 and 22, and fresh weights of WL were measured on the same days of sampling the water. The results showed that at the still-water stage, WL contributed to the reduction of chemical oxygen demand (14.74±4.14% and 8.69±0.92%, respectively), total inorganic nitrogen (23.93±2.35% and 12.80±1.30%, respectively), ammonium (25.21±5.44% and 1.12±0.93%), nitrite (59.98±3.22% and 22.37±1.21%, respectively) and phosphate (71.84±0.89% and 61.64±1.65%, respectively) on days 0–3 more than on days 4–7 but did not help decrease nitrate concentrations on days 0–7. WL contributed to reducing organic matter less at the running-water stage than at the still-water stage. WL helped lower ammonium, nitrite and nitrate concentrations at the running-water stage more than at the still-water stage but did so more for ammonium and nitrate compared with nitrite at the running-water stage. No differences in pollutant concentration reductions between the two treatments (without and with WL) were found in ponds 1, 2 and 3. On days 10–22, no clear trend in increasing or decreasing pollutant concentrations emerged, except nitrite concentration, which lessened over time. No significant differences in the relative daily WL fresh biomass increase between the still-water and the running-water days were observed. The findings indicate that WL is an aquatic plant that can be used in treating wastewater from biogas systems, showing a high efficiency in lowering phosphorus concentrations and a potential for removing nitrite.
Rocznik
Strony
80--89
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Environmental Sciences, College of Environment and Natural Resources, Cantho University, 3-2 street, Xuan Khanh Ward, Ninh Kieu District, Cantho City, 94000, Vietnam
  • Department of Environmental Sciences, College of Environment and Natural Resources, Cantho University, 3-2 street, Xuan Khanh Ward, Ninh Kieu District, Cantho City, 94000, Vietnam
  • Department of Environmental Sciences, College of Environment and Natural Resources, Cantho University, 3-2 street, Xuan Khanh Ward, Ninh Kieu District, Cantho City, 94000, Vietnam
Bibliografia
  • 1. Angove C., Norkko A., Gustafsson C. 2018. Assessing the efficiencies and challenges for nutrient uptake by aquatic plants. Journal of Experimental Marine Biology and Ecology. 507, 23–30. https://doi.org/10.1016/j.jembe.2018.07.005
  • 2. Fox L., Struik P., Appleton B., Rule J. 2008. Nitrogen phytoremediation by water hyacinth (Eichhornia Crassipes (Mart.) Solms). Water Air Soil Pollut. 194, 199–207. https://doi.org/10.1007/s11270-008-9708-x
  • 3. Guo J., Peng Y., Huang H., Wang S., Ge S., Zhang J., Wang Z. 2010. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater. Journal of Hazardous Materials. 179(1–3), 471–479. https://doi.org/10.1016/j.jhazmat.2010.03.027
  • 4. Kumar V., Singh J., Pathak V. V., Ahmad S., Kothari R. 2017. Experimental and kinetics study for phytoremediation of sugar mill effluent using water lettuce (Pistia stratiotes L.) and its end use for biogas production. 3 Biotech. 7(5), 330. https://doi.org/10.1007/s13205-017-0963-7
  • 5. Le H. V., Luu T. N. Y., Vo T. D. N., Nguyen V .C. N. 2017. Study on treatment of biogas effluent by high rate Spirulina sp. algae culture pond. Journal of Cantho University, Vietnam. 49 (part A), 1–10. https://doi.org/10.22144/jvn.2017.001
  • 6. Lesiv M. S., Polishchuk A. I., Antonyak H. L. 2020. Aquatic macrophytes: ecological features and functions. Studia Biologica. 14(2), 79–94. http://dx.doi.org/10.30970/sbi.1402.619
  • 7. Lu Q., He Z. L., Graetz D.A., Stoffella P. J., Yang X. E. 2010. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res. 17, 84–96. https://doi.org/10.1007/s11356-008-0094-0
  • 8. Mishra V. K., Tripathi B. D. 2009. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). J Hazard Mat. 164, 1059–1063.
  • 9. Mukherjee B., Majumdar M., Gangopadhyay A., Chakraborty S., Chatterjee D. 2015. Phytoremediation of parboiled rice mill wastewater using water lettuce (Pistia Stratiotes). International Journal of Phytoremediation. 17, 7, 651–656. https://doi.org/10.1080/15226514.2014.950415
  • 10. Nahar K., Hoque S. 2021. Phytoremediation is done to improve the eutrophic ecosystem by floating aquatic macrophytes and water lettuce (Pistia stratiotes L.) at a lab scale. Egyptian Journal of Aquatic Research. 47, 231–237. https://doi.org/10.1016/j.ejar.2021.05.003
  • 11. Nguyen V.C., Tran V.T., Le T.M.K., Nguyen X.H. 2022. Water Lettuce (Pistia stratiotes L.) as a Potential Material for Biogas Production. J. Ecol. Eng. 23, 182–188. https://doi.org/10.12911/22998993/148197
  • 12. Nguyen V.C.N., Phan T.H., Vo H.N. 2012. Review on the most popular anaerobic digester models in the Mekong Delta, Journal of Vietnamese Environment. 1, 8–19. https://doi.org/10.13141/jve.vol2.no1.pp819 (In Vietnamese)
  • 13. Pandey V.C. 2012. Invasive species-based efficient green technology for phytoremediation of fly ash deposits. Journal of Geochemical Exploration. 123, 13–18. https://doi.org/10.1016/j.gexplo.2012.05.008
  • 14. Pantawong R., Chuanchai A., Thipbunrat P., Unpaprom Y., Ramraj R. 2015. Experimental investigation on biogas production from water lettuce, Pistia stratiotes L. Emer Life Sci Res. 1(2), 41–46.
  • 15. Pieterse A.H., Lange Lde., Verhagen L. 1981. A study on certain aspects of seed germination and growth of Pistia stratiotes L. Acta Botanica Neerlandica. 30(1/2), 47–57. https://doi.org/10.1111/j.1438-8677.1981.tb00386.x
  • 16. Rezania S., Ponraj M., Talaiekhozani A., Mohamad S. E., Din M. F., Taib S. M., Sabbagh F., Sairan F.M. 2015. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Journal of Environmental Management. 163, 125–133. https://doi.org/0.1016/j.jenvman.2015.08.018
  • 17. Rivers L. 2002. Water Lettuce (Pistia stratiotes). Gainsville, USA: the University of Florida and Sea Grant. [online], website: https://seagrant.psu.edu/ sites/default/files/Water%20lettuce%202020_red. pdf (accessed 20 January, 2024)
  • 18. Shah M., Hashmi H. N., Ali A., Ghumman A. R. 2014. Performance assessment of aquatic macrophytes for treatment of municipal wastewater. J Environ Health Sci Eng. 12, 106. https://doi.org/10.1186/2052-336X-12-106
  • 19. Sikawa D. C., Yakupitiyage A. 2010. The hydroponic production of lettuce (Lactuca sativa L) by using hybrid catfish (Clarias microcephalus × C. gariepinus) pond water: Potentials and constraints Agric, Water Mngt. 97, 1317–1325. https://doi.org/10.1016/j.agwat.2010.03.013
  • 20. Sooknah R. D, Wilkie A. C. 2004. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy wastewater. Ecological Engineering. 22, 27–42. https://doi.org/0.1016/j.ecoleng.2004.01.004
  • 21. Suthar, S., Pandey, B., Gusain, R., Gaur, R.Z. 2017. Nutrient changes and biodynamics of Eisenia fetida during vermicomposting of water lettuce (Pistia sp.) biomass: a noxious weed of aquatic system. Environ. Sci. Pollut. Res. 24, 199–207. https://doi.org/10.1007/s11356-016-7770-2
  • 22. Thuan N. C., Cong N. V. 2022. Removal of ammonium and nitrate in water by an aquatic plant: water lettuce (Pistia stratiotes L.). Applied ecology and environmental research. 20(6), 5095–5102. http://dx.doi.org/10.15666/aeer/2006_50955102
  • 23. Tran, T.P., Dao, T.H.T., Duong, T.M.H. 2017. Asesssing the quality of livestock wastewater from biogas tank. Journal of Sciences and Technology, Vietnam. 166, 197–200. [Online], website: http://jst.tnu.edu.vn/jst/article/viewFile/1279/pdf. (accessed 20 August, 2022)
  • 24. Tsuji M. 2002. SeO3 2- selective properties of inorganic materials synthesized by the soft chemical process. Solid State Ionics. 151, 385–392. https://doi.org/10.1016/S0167-2738(02)00544-1
  • 25. Victor, K. K., Séka, Y., Norbert, K. K., Sanogo, T. A., Celestin, A. B. 2016. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). International Journal of Phytoremediation, 18(10), 949–955. https://doi.org/10.1080/15226514.20 16.1183567
  • 26. Walstad, D. L. 1999. Ecology of the Planted Aquarium: A Practical Manual and Scientific Treatise for the Home Aquarist. Chapel Hill, NC: Echinodorus Publishing. 106.
  • 27. Yildiz E., 2004. Phosphate removal from water by f ly ash using crossflow microfiltration. Separation and Purification Technology. 35, 241–252. https://doi.org/10.1016/S1383-5866(03)00145-X
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5daf29be-d9f4-4b4f-9f67-00d27afe9aa5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.