PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decoupling Analysis, Economic Structure on Environmental Pressure in Vietnam During 2008–2018

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research, we display the trajectories of Vietnam’s environmental pressure throughout the years during 2008–2018 and identify the underlying socioeconomic driving factors through input-output and forward-backward linkage analysis. Decoupling index (DI) and input-output analysis (IOA) indicated that mining, the extraction, and use of fossil fuels, as well as energy generation for daily life and manufacturing industries, are the primary contributors to rising environmental pressures (DI; forward and backward linkage values > 1). Vietnam’s decoupling performance has four distinct phases. Mineral and fossil fuel depletion; climate change in the short-term and long-term, and water stress indexes (the ratio of total annual freshwater withdrawal to hydrological availability) were high with 456.91%; 55.91%; 54.43%; 41.87%; and 30%, respectively during 2008–2018.
Twórcy
autor
  • HaUI Institute of Technology – HIT, University of Industry, Hanoi, Vietnam 298 Cau Dien Street, Bac Tu Liem District, Ha Noi City, Vietnam
Bibliografia
  • 1. Asian Development Bank. 2018. Economic Indicators for Eastern Asia Input-Output Tables. Available online: https://dx.doi.org/10.22617/TCS189778-2.
  • 2. Boqiang L, Kui L. 2017. Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry. Sustainability (Switzerland), 9(7), 1198. doi: 10.3390/su9071198.
  • 3. Cai H., Qu S., Wang M. 2020. Changes in China’s carbon footprint and driving factors based on newly constructed time series input–output tables from 2009 to 2016. Science of The Total Environment, 711, 134555. doi: 10.1016/j.scitotenv.2019.134555.
  • 4. Chen Xikang. 1990. Input-Occupancy-Output Analysis and Its Application in China, in Dynamics and Conflict in Regional Structural Change, Chinese Academy of Science, 267-278. Edited by Manas Chattezji and Robert E. Kuenne, Macmillan Press, London. doi: 10.1007/978-1-349-10636-3_16.
  • 5. Chiu, Anthony S.F., Liang D., Yong G., Corazon R., Emee T. 2017. Philippine Resource Efficiency in Asian Context: Status, Trends and Driving Forces of Philippine Material Flows from 1980 to 2008. Journal of Cleaner Production 153, 63–73. doi: 10.1016/J.JCLEPRO.2017.03.158.
  • 6. Drejer I. 2002. Input-Output based measures of interindustry linkages revisited - A Survey and Discussion. CEBR Working Paper 2002–2003.
  • 7. Eurostat. 2013. Economy-wide Material Flow Accounting (EW-MFA): Compilation guide 2013. Luxembourg: Statistical Office of the European Communities.
  • 8. Eurostat. 2017. Economy-wide Material Flow Accounting (EW-MFA): Compilation guide 2017. Luxembourg: Statistical Office of the European Communities
  • 9. Fleischer A., D. Freeman. 1997. Multiregional Input-Output Analysis. Annals of Tourism Research, (24), 998–1000.
  • 10. Huong T.T., Izhar H.S., Hung S.P. 2020. Decarbonization of Vietnam’s Economy: Decomposing the Drivers for a Low-Carbon Growth. Environmental Science and Pollution Research, 28, 518–529. doi: 10.1007/s11356-020-10481-0.
  • 11. Huong T.T., Izhar H.S. 2021. Dynamics of Economy-Wide Resource Flow and Consumption in China, South Korea, and Vietnam—a Pan-Regional Analysis. Environmental Monitoring and Assessment, 193(9), 1–18. doi: 10.1007/s10661-021-09256-y.
  • 12. International Energy Agency. 2022. Tracking SGD7 – The Energy Progress Report 2022, pp. 158-177. Tracking SDG7: The Energy Progress Report, 2022 – Analysis - IEA.
  • 13.Jones L.P. 1976. The Measurement of Hirschmanian Linkages. Quarterly Journal of Economics, 90(2), 323–333. doi: 10.2307/1884635.
  • 14. Leontief W. 1974. Structure of the World Economy. Outline of a Simple Input-output formulation. The Swedish Journal of Economics, 76, 4 , 387–401. doi: 10.2307/3439247.
  • 15. Liang S., Feng T., Shen Q., Anthony S.F.C., Xiaop-ing J., Ming X. 2017. Developing the Chinese Environmentally Extended Input-Output (CEEIO) Database. Journal of Industrial Ecology, 21, 953–965.
  • 16. Lin J.S., Chang F.Y.1997. Linkage effects and environmental impact from oil consumption industries in Taiwan. Journal of Environmental Management, 49(4), 393–411.
  • 17. Masina P. 2006. Vietnam’s Development Strategies, 1–182. doi: 10.4324/9780203341308.
  • 18. Miller R.E., Blair P.D. 1985. Input-Output Analysis: Foundations and Extensions, Prentice-Hall Inc., New Jersey.
  • 19. Ministry of Industry and Trade of Vietnam. 2018. National Program Vietnam – National Energy Efficiency Program 2019–2030, 1-104. Available online: Vietnam - National Energy Efficiency Program 2019-2030 (worldbank.org).
  • 20. National Assembly of Vietnam. 2016. The five year socio-economic development plan 2016–2020. Available online: Vietnam-SEDP-2016-2020.pdf (worldbank.org).
  • 21. Oracle Database. 2022. Database Documentation - Database Documentation. World Energy Balances. Available online: Database Documentation - Data-base Documentation (oracle.com)
  • 22. Rumiana G. 2015. Backward and forward linkages based on an input-output analysis – a comparative study of Poland and selected European countries. Applied Econometrics Papers, Institute of Econometrics Warsaw School of Economics (SGH). 6(8), 2–513.
  • 23. Schandl H., Graham M.T. 2009. The Dematerialization Potential of the Australian Economy. Journal of Industrial Ecology 13(6), 863–880. doi: 10.1111/j.1530-9290.2009.00163. x.
  • 24. Thijs ten Raa. 2009. Input-output economics: Theory and applications – Featuring Asian economics. Utrecht University.
  • 25. United Nations Statistics Division. 2021. The Energy Progress Report 2021. International Energy Agency, 158–177.
  • 26. Vo T.T., Anh D.N., Dinh H.T. 2015. Innovation Policy in Vietnam. Innovation Policy in Asia, 247–276.
  • 27. Wang X.C., Klemes J.J., Yutao W., Xiabon D., Hejie W., Zihan X., Petar S.V. 2020. Water-Energy Carbon Emissions Nexus analysis of China: An environmental input-output model-based approach. Applied Energy, 261(1), 114431.
  • 28. Wang Z., Lin Z., Guozhu M., Ben W. 2015. Eco-Efficiency Trends and Decoupling Analysis of Environmental Pressures in Tianjin, China. Sustainability (Switzerland), 7(11), 15407–15422. doi:10.3390/su71115407.
  • 29. World Bank. 2016. Climate Risk Country Profile. Asian Development Bank. Available online: Climate Risk Country Profiles | Asian Development Bank (adb.org).
  • 30. Xu X., Jun G., Zhonghao Z., Jing F. 2019. An Assessment of Chinese Pathways to Implement the Sustainable Development Goal-11 (SDG-11)—A Case Study of the Yangtze River Delta Urban Agglomeration. International Journal of Environmental Research and Public Health, 16(13). doi: 10.3390/ijerph16132288.
  • 31. Yu Y., Jiang T., Li S., Li X., Gao D. 2020. Energy-related CO2 emissions and structural emissions’ reduction in China’s agriculture: An input–output perspective. Journal of Cleaner Production, 276, 124169.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5dadc2d6-38bc-4aa0-9c11-fb6a249cfce9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.