PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The most current solutions using virtual-reality-based methods in cardiac surgery – a survey

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is a widespread belief that VR technologies can provide controlled, multi-sensory, interactive 3D stimulus environments that engage patients in interventions and measure, record and motivate required human performance. In order to investigate state-of-the-art and associated occupations we provided a careful review of 6 leading medical and technical bibliometric databases. Despite the apparent popularity of the topic of VR use in cardiac surgery, only 47articles published between 2002 and 2022 met the inclusion criteria. Based on them, VR-based solutions in cardiac surgery are useful both, for medical specialists and for the patients themselves. The new lifestyle required from cardiac surgery patients is easier to implement thanks to VR-based educational and motivational tools. However, it is necessary to develop the above-mentioned tools and compare their effectiveness with Augmented Reality (AR). For the aforementioned reasons, interdisciplinary collaboration between scientists, clinicians and engineers is necessary.
Wydawca
Czasopismo
Rocznik
Tom
Strony
123--145
Opis fizyczny
Bibliogr. 101 poz., rys.
Twórcy
  • Kazimierz Wielki University in Bydgoszcz, Institute of Computer Science, Kopernika 1,85-074 Bydgoszcz, Poland
  • Medical University in Lublin, Neuropsychological Research Unit, 2nd Clinic of the Psychiatryand Psychiatric Rehabilitation, Gluska 1, 20-439 Lublin, Poland
  • Opole University of Technology, Faculty of Electrical Engineering, Automatic Controland Informatics, Proszkowska 76, 45-758 Opole, Poland
  • The President Stanislaw Wojciechowski Calisia University, Faculty of Health Sciences, Nowy Swiat 4, 62-800 Kalisz, Poland
  • Prof. Zbigniew Religa Foundation for Cardiac Surgery Development, Wolnosci 345a, 41-800,Zabrze, Poland
  • Medical Algorithms Sp. z o.o., aleja Legionów 4, 41-902 Bytom, Poland
  • Wroclaw Medical University, Faculty of Medicine, J. Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland
autor
  • University of Opole, Faculty of Natural Sciences and Technology, Kardynała BolesławaKominka 6/6a, 45-032 Opole, Poland
  • University of Opole, Institute of Medical Sciences, Oleska 48, 45-052 Opole, Poland
  • University of Opole, Institute of Medical Sciences, Oleska 48, 45-052 Opole, Poland
  • University of Opole, Institute of Medical Sciences, Oleska 48, 45-052 Opole, Poland
autor
  • University of Opole, Institute of Medical Sciences, Oleska 48, 45-052 Opole, Poland
autor
  • Opole University of Technology, Faculty of Electrical Engineering, Automatic Controland Informatics, Proszkowska 76, 45-758 Opole, Poland
autor
  • University of Opole, Institute of Computer Science, Oleska 48, 45-052 Opole, Poland
  • University of Greenwich, School of Computing and Mathematical Sciences, Old Royal NavalCollege, Park Row, SE10 9LS London, UK
  • Opole University of Technology, Faculty of Electrical Engineering, Automatic Controland Informatics, Proszkowska 76, 45-758 Opole, Poland
  • Opole University of Technology, Faculty of Electrical Engineering, Automatic Controland Informatics, Proszkowska 76, 45-758 Opole, Poland
  • VSB-Technical University Ostrava, Department of Cybernetics and Biomedical Engineering –FEECS, 17. listopadu 2172/15, 708 00 Ostrava–Poruba, Czech Republic
  • Opole University of Technology, Faculty of Electrical Engineering, Automatic Controland Informatics, Proszkowska 76, 45-758 Opole, Poland
  • VSB-Technical University Ostrava, Department of Cybernetics and Biomedical Engineering –FEECS, 17. listopadu 2172/15, 708 00 Ostrava–Poruba, Czech Republic
  • Opole University of Technology, Faculty of Electrical Engineering, Automatic Controland Informatics, Proszkowska 76, 45-758 Opole, Poland
  • VSB-Technical University Ostrava, Department of Cybernetics and Biomedical Engineering –FEECS, 17. listopadu 2172/15, 708 00 Ostrava–Poruba, Czech Republic
  • Opole University of Technology, Faculty of Electrical Engineering, Automatic Controland Informatics, Proszkowska 76, 45-758 Opole, Poland
Bibliografia
  • [1] Aardoom J.J., Hilt A.D., Woudenberg T., Chavannes N.H., Atsma D.E.: A Pre-operative Virtual Reality App for Patients Scheduled for Cardiac Catheterization: Pre-Post Questionnaire Study Examining Feasibility, Usability, and Acceptability, JMIR Cardio, vol. 6(1), e29473, 2022. doi: 10.2196/29473.
  • [2] Alfalah S.F.M., Falah J., Alfalah T., Elfalah M., Muhaidat N., Falah O.: A Comparative Study Between a Virtual Reality Heart Anatomy System and Traditional Medical Teaching Modalities, Virtual Reality, vol. 23, pp. 229–234, 2019.
  • [3] Alonzo M., AnilKumar S., Roman B., Tasnim N., Joddar B.: 3D Bioprinting of cardiac tissue and cardiac stem cell therapy, Translational Research, vol. 211,pp. 64–83, 2019. doi: 10.1016/j.trsl.2019.04.004.
  • [4] de Assis Pereira Cacau L., Uruga Oliveira G., Godinho Maynard L.,de Araújo Filho A.A., Monteiro da Silva Jr W., Cerqueria Neto M.L., Antoniolli A.R., Santana-Filho V.J.: The use of the virtual reality as intervention tool in the postoperative of cardiac surgery, Revista Brasileira de Cirurgia Cardiovascular, vol. 28(2), pp. 281–289, 2013. doi: 10.5935/1678-9741.20130039.
  • [5] Barbosa Borges M.G., Lago Borges D., Oliveira Ribeiro M., Silva Lima L.S., Carneiro Morais Macedo K., da Silva Nina V.J.: Early Mobilization Prescriptionin Patients Undergoing Cardiac Surgery: Systematic Review, Brazilian Journal of Cardiovascular Surgery, vol. 37(2), pp. 227–238, 2022. doi: 10.21470/1678-9741-2021-0140.
  • [6] Borger M.: The future of cardiac surgery training: A survival guide,Journal of Thoracic and Cardiovascular Surgery, vol. 154(3), pp. 994–995, 2017. doi: 10.1016/j.jtcvs.2017.04.060.
  • [7] Bălan O., Moise G., Moldoveanu A., Leordeanu M., Moldoveanu F.: An Investigation of Various Machine and Deep Learning Techniques Applied in Automatic Fear Level Detection and Acrophobia Virtual Therapy, Sensors, vol. 20, p. 496, 2020. doi: 10.3390/s20020496.
  • [8] Chakravarthy M.: Future of awake cardiac surgery, Journal of Cardiothoracic and Vascular Anesthesia, vol. 28(3), pp. 771–777, 2014. doi: 10.1053/j.jvca.2013.03.005.
  • [9] Chao Y.P., Chuang H.-H., Hsin L.-J., Kang C.-J., Fang T.-J., Li H.-Y.,Huang C.-G., et al.: Using a 360◦Virtual Reality or 2D Video to Learn History Taking and Physical Examination Skills for Undergraduate Medical Students: Pilot Randomized Controlled Trial, JMIR Serious Games, vol. 9(4), e13124,2021. doi: 10.2196/13124.
  • [10] Chiu H., Kang Y., Wang W., Chen C., Hsu W., Tseng M., Wei P.: The Role of Active Engagement of Peer Observation in the Acquisition of Surgical Skillsin Virtual Reality Tasks for Novices, Journal of Surgical Education, vol. 76(6), pp. 1655–1662, 2019. doi: 10.1016/j.jsurg.2019.05.004.
  • [11] Chiu H.-Y., Kang Y.-N., Wang W.-L., Tong Y.-S., Chang S.-W., Fong T.-H.,Wei P.-L.: Gender differences in the acquisition of suturing skills withthe da Vinci surgical system,Journal of the Formosan Medical Association,vol. 119(1 Pt 3), pp. 462–470, 2020. doi: 10.1016/j.jfma.2019.06.013.
  • [12] Ershow A., Peterson C., Riley W., Rizzo A., Wansink B.: Virtual reality technologies for research and education in obesity and diabetes: research needs and opportunities, Journal of Diabetes Science and Technology, vol. 5(2), pp. 212–224, 2011. doi: 10.1177/193229681100500202.
  • [13] Eysenck M., Keane M.: Attention and performance limitations. In: D.J. Levitin(ed.), Foundations of cognitive psychology: core readings, pp. 363–398, MITPress, Cambridge, MA, 2002.
  • [14] Fernández-Costa D., Gómez-Salgado J., del Río A.C., Borrallo-Riego A.,Guerra-Martin M.D.: Effects of prehabilitation on functional capacity in agedpatients undergoing cardiothoracic surgeries: a systematic review, Healthcare, vol. 9(11), 1602, 2021. doi: 10.3390/healthcare9111602.
  • [15] Fidurski K., Falkowski-Gilski P.: Nauka w świecie cyfrowym okiem młodego inżyniera – początki techniki wirtualnej rzeczywistości, Pismo PG, vol. 1, pp. 30–32, 2022.
  • [16] Fluet G., Deutsch J.: Virtual Reality for Sensori motor Rehabilitation Post-Stroke: The Promise and Current State of the Field, Current Physical Medicine and Rehabilitation Reports, vol. 1(1), pp. 9–20, 2013. doi: 10.1007/s40141-013-0005-2.
  • [17] Friedl R., Preisack M.B., Klas W., Rose T., Stracke S., Quast K.J., Hannekum A., Gödje O.: Virtual reality and 3D visualizations in heart surgery education, Heart Surgery Forum, vol. 5(3), pp. E17–E21, 2002.
  • [18] Friedl R., Preisack M., Schefer M., Klas W., Tremper J., Rose T., Bay J.,et al.: CardioOP: an integrated approach to teleteaching in cardiac surgery, Studies in Health Technology and Informatics, vol. 70, pp. 76–82, 2000.
  • [19] Furmanek W., Piecuch A. (eds.): Dydaktyka Informatyki: modelowanie i symulacje komputerowe, Wydawnictwo Uniwersytetu Rzeszowskiego, Rzeszów, 2010.
  • [20] García-Bravo S., Cuesta-Gêmez A., Campuzano-Ruiz R., Lêpez-Navas M.,Domínguez-Paniagua J., Araujo-Narvçez A., Barreìada-Copete E., et al.: Virtual reality and video games in cardiac rehabilitation programs. A systematicreview, Disability and Rehabilitation, vol. 43(4), pp. 448–457, 2021.
  • [21] Gendia A., Rehman M., Cota A., Gilbert J., Clark J.: Can virtual reality technology be considered as a part of the surgical care pathway?, The Annals of the Royal College of Surgeons of England, vol. 105(1), pp. 2–6, 2023. doi: 10.1308/rcsann.2022.0125.
  • [22] Ghosh M.G., Jolley M.A., Mascio C.E., Chen J.M., Fuller S., Rome J.J.,Silvestro E., et al.: Clinical 3D modeling to guide pediatric cardiothoracic surgery and intervention using 3D printed anatomic models, computer aided design and virtual reality, 3D Printing in Medicine, vol. 8(1), 11, 2022. doi: 10.1186/s41205-022-00137-9.
  • [23] Gleason A., Servais E., Quadri S., Manganiello M., Cheah Y.L., Simon C.J., Preston E., et al.: Developing basic robotic skills using virtual reality simulation and automated assessment tools: a multidisciplinary robotic virtual reality-based curriculum using the Da Vinci Skills Simulator and tracking progress with the Intuitive Learning platform, Journal of Robotic Surgery, vol. 16(6), pp. 1313–1319, 2022. doi: 10.1007/s11701-021-01363-9.
  • [24] Gokce C., Gurcan C., Delogu L., Yilmazer A.: 2D materials for cardiac tissue repair and regeneration, Frontiers in Cardiovascular Medicine, vol. 9, 802551, 2022. doi: 10.3389/fcvm.2022.802551.
  • [25] Gooding P., Clifford D.: Semi-automated care: Video-algorithmic patient monitoring and surveillance in care settings, Journal of Bioethical Inquiry, vol. 18(4), pp. 541–546, 2021. doi: 10.1007/s11673-021-10139-7.
  • [26] Grab M., Hopfner C., Gesenhues A., König F., Haas N.A., Hagl C., Curta A., Thierfelder N.: Development and evaluation of 3D-printed cardiovascular phantoms for interventional planning and training, JoVE (Journal of Visualized Ex-periments), vol. 167, e62063, 2021. doi: 10.3791/62063-v.
  • [27] Hansen T.B., Berg S.K., Sibilitz K.L., Zwisler A.D., Norekvål T.M., Lee A.,Buus N.: Patient perceptions of experience with cardiac rehabilitation after isolated heart valve surgery, European Journal of Cardiovascular Nursing, vol. 17(1), pp. 45–53, 2018. doi: 10.1177/1474515117716245.
  • [28] Hansen T.B., Zwisler A.D., Berg S.K., Sibilitz K.L., Buus N., Lee A.: Cardiac rehabilitation patients’ perspectives on the recovery following heart valve surgery: a narrative analysis, Journal of Advanced Nursing, vol. 72(5), pp. 1097–1108, 2016. doi: 10.1111/jan.12904.
  • [29] Hendricks T.M., Gutierrez C.N., Stulak J.M., Dearani J.A., Miller J.D.: The Use of Virtual Reality to Reduce Preoperative Anxiety in First-Time Sternotomy Patients: A Randomized Controlled Pilot Trial, Mayo Clinic Proceedings, vol. 95(6), pp. 1148–1157, 2020. doi: 10.1016/j.mayocp.2020.02.032.
  • [30] Hirota K.: Preoperative management and postoperative delirium: the possibility of neuroprehabilitation using virtual reality, Journal of Anesthesia, vol. 34(1), pp. 1–4, 2020.
  • [31] Ishikawa N., Watanabe G.: Robot-assisted cardiac surgery, Annals of Thoracic and Cardiovascular Surgery, vol. 21(4), pp. 322–328, 2015. doi: 10.5761/atcs.ra.15-00145.
  • [32] Ishikawa N., Watanabe G.: Ultra-minimally invasive cardiac surgery: robotic surgery and awake CABG, Surgery Today Official Journal of the Japan Surgical Society, vol. 45(1), pp. 1–7, 2015.
  • [33] Ivanov N.A., Green D.B., Guy T.S.: Integrate imaging approach for minimally invasive and robotic procedures, Journal of Thoracic Disease, vol. 9(Suppl4), pp. S264–S270, 2017. doi: 10.21037/jtd.2017.03.141.
  • [34] Jin Z.: Clinical application of Da Vinci surgical system in China, Zhongguo YiLiao Qi Xie Za Zhi (Chinese Journal of Medical Instrumentation), vol. 38(1), pp. 47–49, 2014.
  • [35] Jones T., Moore T., Choo J.: The impact of virtual reality on chronic pain, PLoS ONE, vol. 11(12), e0167523, 2016. doi: 10.1371/journal.pone.0167523.
  • [36] Jóźwik S., Wrzeciono A., Cieślik B., Kiper P., Szczepańska-Gieracha J., Gajda R.: The Use of Virtual Therapy in Cardiac Rehabilitation of Male Patients with Coronary Heart Disease: A Randomized Pilot Study,Healthcare, vol. 10(4), 745, 2022. doi: 10.3390/healthcare10040745.
  • [37] Kamel Boulos M., Zhang P.: Digital twins: from personalised medicine to precision public health, Journal of Personalized Medicine, vol. 11(8), 745, 2021. doi: 10.3390/jpm11080745.
  • [38] Kappanayil M., Koneti N.R., Kannan R.R., Kottayil B., Kumar K.: Three-dimensional-printed cardiac prototypes aid surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases: Early experience and proof of concept in a resource-limited environment, Annals of Pediatric Cardiology, vol. 10(2), pp. 117–125, 2017. doi: 10.4103/apc.apc_149_16.
  • [39] Kaufman D.M., Bell W.: Teaching and assessing clinical skills using virtual reality, Studies in Health Technology and Informatics, vol. 39, pp. 467–472, 1997.
  • [40] Kennedy C.W., Hu T., Desai J.P., Wechsler A.S., Kresh J.Y.: A novel approachto robotic cardiac surgery using haptics and vision, Cardiovascular Engineering: An International Journal, vol. 2, pp. 15–22, 2002.
  • [41] Kim B., Nguyen P., Loke Y.H., Cleveland V., Liu X., Mass P., Hibino N., et al.: Virtual Reality Cardiac Surgical Planning Software (CorFix) for Designing Patient-Specific Vascular Grafts: Development and Pilot Usability Study,JMIR Cardio, vol. 6(1), e35488, 2022. doi: 10.2196/35488.
  • [42] Kiraly L., Shah N.C., Abdullah O., Al-Ketan O., Rowshan R.: Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery – A Multidisciplinary Team-Learning Experience, Biomolecules, vol. 11(11), 1703, 2021. doi: 10.3390/biom11111703.
  • [43] Krasemann T., Branstetter J.: Virtual Reality Treatment Planning for Congenital Heart Disease, JACC Case Reports, vol. 3(14), pp. 1584–1585, 2021. doi: 10.1016/j.jaccas.2021.08.023.
  • [44] Kruk van der S.R., Zielinski R., MacDougall H., Hughes-Barton D., Gunn K.M.: Virtual reality as a patient education tool in healthcare: A scoping review, Patient Education and Counseling, vol. 105(7), pp. 1928–1942, 2022. doi: 10.1016/j.pec.2022.02.005.
  • [45] Kumar A., Krishnamurthi R., Nayyar A., Sharma K., Grover V., Hossain E.: A novel smart healthcare design, simulation, and implementation using healthcare 4.0 processes, IEEE Access, vol. 8, pp. 118433–118471, 2020. doi: 10.1109/access.2020.3004790.
  • [46] Laghlam D., Naudin C., Coroyer L., Aidan V., Malvy J., Rahoual G., Estagnasié P., Squara P.: Virtual reality vs. Kalinox©for management of pain in intensive care unit after cardiac surgery: a randomized study, Annals of Inten-sive Care, vol. 11(1), 74, 2021. doi: 10.1186/s13613-021-00866-w.
  • [47] Lareyre F., Chaudhuri A., Adam C., Carrier M., Mialhe C., Raffort J.: Applications of Head-Mounted Displays and Smart Glasses in Vascular Surgery, Annalsof Vascular Surgery, vol. 75, pp. 497–512, 2021. doi: 10.1016/j.avsg.2021.02.033.
  • [48] Lau K.H.V.: Computer-based teaching module design: principles derived from learning theories, Medical Education in Review, vol. 48(3), pp. 247–254, 2014. doi: 10.1111/medu.12357.
  • [49] Linte C.A., Moore J., Wedlake C., Bainbridge D., Guiraudon G.M., Jones D.L., Peters T.M.: Inside the beating heart: an in vivo feasibility study on fusing pre-and intra-operative imaging for minimally invasive therapy, International Journal of Computer Assisted Radiology and Surgery, vol. 4(2), pp. 113–123, 2009.
  • [50] Linte C.A., Moore J., Wiles A.D., Wedlake C., Peters T.M.: Virtual reality-enhanced ultrasound guidance: a novel technique for intracardiac interventions, Computer Aided Surgery, vol. 13(2), pp. 82–94, 2008. doi: 10.1080/10929080801951160.
  • [51] Linte C.A., White J., Eagleson R., Guiraudon G.M., Peters T.M.: Virtual and augmented medical imaging environments: enabling technology for minimally invasive cardiac interventional guidance, IEEE Reviews in Biomedical Engineering, vol. 3, pp. 25–47, 2010. doi: 10.1109/rbme.2010.2082522.
  • [52] Lloréns R., Noé E., Colomer C., Alcañiz M.: Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recoveryafter stroke. A randomized controlled trial, Archives of Physical Medicine and Rehabilitation, vol. 96(3), pp. 418–425, 2015. doi: 10.1016/j.apmr.2014.10.019.
  • [53] Lo J., Moore J., Wedlake C., Guiraudon G., Eagleson R., Peters T.: Surgeon-controlled visualization techniques for virtual reality-guided cardiac surgery, Studies in Health Technology and Informatics, vol. 142, pp. 162–167, 2009.
  • [54] Maciołek J., Wąsek W., Kamiński B., Piotrowicz K., Krzesiński P.: The impact of mobile virtual reality–enhanced relaxation training on anxiety levelsin patients undergoing cardiac rehabilitation, Kardiologia Polska (Polish HeartJournal), vol. 78(10), pp. 1032–1034, 2020. doi: 10.33963/kp.15528.
  • [55] Maresky H.S., Oikonomou A., Ali I., Ditkofsky N., Pakkal M., Ballyk B.: Virtualreality and cardiac anatomy: Exploring immersive three-dimensional cardiacimaging, a pilot study in undergraduate medical anatomy education, Clinical Anatomy, vol. 32(2), pp. 238–243, 2019.
  • [56] Maynard L.G., de Menezes D.L., Lião N.S., de Jesus E.M., Andrade N.L.S.,Santos J.C.D., da Silva Júnior W.M.,et al.: Effects of exercise training combined with virtual reality in functionality and health-related quality of life of patients on hemodialysis, Games for Health Journal, vol. 8(5), pp. 339–348,2019. doi: 10.1089/g4h.2018.0066.
  • [57] McFarland M., Zelaya N., Hossain G., Hicks D., McLauchlan L.: Pain Mitigation Through Virtual Reality Applications. In: 2019 IEEE International Symposium on Measurement and Control in Robotics (ISMCR), pp. A2–5, 2019. doi: 10.1109/ismcr47492.2019.8955702.
  • [58] McKechnie T., Levin M., Zhou K., Freedman B., Palter V.N., Grantcharov T.P.: Virtual surgical training during COVID-19: operating room simulation platforms accessible from home, Annals of Surgery, vol. 272(2), e153, 2020. doi: 10.1097/sla.0000000000003999.
  • [59] Moscatiello M., Lo Rito M.: Commentary: Virtual reality 3-dimensional imagingof atrioventricular valves: A tool for surgeons or a toy for engineers?, JTCVS Techniques, vol. 7, pp. 278–279, 2021. doi: 10.1016/j.xjtc.2021.03.021.
  • [60] Mosso-Vázquez J.L., Gao K., Wiederhold B.K., Wiederhold M.D.: Virtual reality for pain management in cardiac surgery, Cyberpsychology, Behavior, and Social Networking, vol. 17(6), pp. 371–378, 2014. doi: 10.1089/cyber.2014.0198.
  • [61] Napa S., Moore M., Bardyn T.: Advancing cardiac surgery case planning andcase review conferences using virtual reality in medical libraries: evaluation of the usability of two virtual reality apps, JMIR Human Factors, vol. 6(1), e12008,2019. doi: 10.2196/12008.
  • [62] Narang A., Hitschrich N., Mor-Avi V., Schreckenberg M., Schummers G., Tiemann K., Hitschrich D., et al.: Virtual Reality Analysis of Three-Dimensional Echocardiographic and Cardiac Computed Tomographic Data Sets, Journal of the American Society of Echocardiography, vol. 33(11), pp. 1306–1315, 2020. doi: 10.1016/j.echo.2020.06.018.
  • [63] Noorali A.A., Hussain Merchant A.A., Babar Chauhan S.S., Khan M.A., Ehsan A.N., Pervez M.B., Tariq M., Fatimi S.H.: Conceptual framework fora cardiac surgery simulation laboratory and competency-based curriculum in Pakistan – a short innovation report, Journal of the Pakistan Medical Association, vol. 72(Suppl 1), pp. S103–S105, 2022. doi: 10.47391/jpma.aku-21.
  • [64] Ojala S., Sirola J., Nykopp T., Kröger H., Nuutinen H.: The impact of teacher’s presence on learning basic surgical tasks with virtual reality headset among medical students, Medical Education Online, vol. 27(1), 2050345, 2022. doi: 10.1080/10872981.2022.2050345.
  • [65] Ong C.S., Krishnan A., Huang C.Y., Spevak P., Vricella L., Hibino N., Garcia J.R., Gaur L.: Role of virtual reality in congenital heart disease, Congenital Heart Disease, vol. 13(3), pp. 357–361, 2018. doi: 10.1111/chd.12587.
  • [66] Pelletier M.P., Kaneko T., Peterson M.D., Thourani V.H.: From sutures towires: The evolving necessities of cardiac surgery training, Journal of Thoracic and Cardiovascular Surgery, vol. 154(3), pp. 990–993, 2017. doi: 10.1016/j.jtcvs.2017.03.157.
  • [67] Perens G., Chyu J., McHenry K., Yoshida T., Finn J.P.: Three-Dimensional Congenital Heart Models Created With Free Software and a Desktop Printer: Assessment of Accuracy, Technical Aspects, and Clinical Use, World Journalfor Pediatric and Congenital Heart Surgery, vol. 11(6), pp. 797–801, 2020. doi: 10.1177/2150135120952072.
  • [68] Peters T.M., Linte C.A., Moore J., Bainbridge D., Jones D.L., Guiraudon G.M.: Towards a medical virtual reality environment for minimally invasive cardiacsurgery. In: Medical Imaging and Augmented Reality: 4th International Work-shop Tokyo, Japan, August 1–2, 2008 Proceedings 4. doi: 10.1007/978-3-540-79982-5_1.
  • [69] Proffitt R., Lange B.: Considerations in the efficacy and effectiveness of virtual reality interventions for stroke rehabilitation: moving the field forward, Physical Therapy, vol. 95(3), pp. 441–448, 2015. doi: 10.2522/ptj.20130571.
  • [70] Rad A.A., Vardanyan R., Lopuszko A., Alt C., Stoffels I., Schmack B.,Ruhparwar A., et al.: Virtual and Augmented Reality in Cardiac Surgery, Brazilian Journal of Cardiovascular Surgery, vol. 37(1), pp. 123–127, 2022. doi: 10.21470/1678-9741-2020-0511.
  • [71] Raimondi F., Vida V., Godard C., Bertelli F., Reffo E., Boddaert N., El Beheiry M., Masson J.: Fast-track virtual reality for cardiac imaging in congenital heart disease, Journal of Cardiac Surgery, vol. 36(7), pp. 2598–2602, 2021. doi: 10.1111/jocs.15508.
  • [72] Ralston B.H., Willett R.C., Namperumal S., Brown N.M., Walsh H., Muñoz, R.A., Del Castillo S., et al.: Use of virtual reality for pediatric cardiac critical care simulation, Cureus, vol. 13(6), e15856, 2021. doi: 10.7759/cureus.15856.
  • [73] Ramphal P.S., Coore D.N., Craven M.P., Forbes N.F., Newman S.M., Coye A.A., Little S.G., Silvera B.C.: A high fidelity tissue-based cardiac surgical simulator, European Journal of Cardio-Thoracic Surgery, vol. 27(5), pp. 910–916, 2005. doi: 10.1016/j.ejcts.2004.12.049.
  • [74] Reardon M.J.: Change is the only constant, Journal of Thoracic and Cardiovascular Surgery, vol. 154(3), pp. 996–997, 2017. doi: 10.1016/j.jtcvs.2017.03.100.
  • [75] Sadeghi A.H., El Mathari S., Abjigitova D., Maat A.P.W.M., Taverne Y.J.H.J., Bogers A.J.C., Mahtab E.A.F.: Current and Future Applications of Virtual,Augmented, and Mixed Reality in Cardiothoracic Surgery, Annals of ThoracicSurgery, vol. 113(2), pp. 681–691, 2022. doi: 10.1016/j.athoracsur.2020.11.030.
  • [76] Sadeghi A.H., Peek J.J., Max S.A., Smit L.L., Martina B.G., Rosalia R.A., Bakhuis W., et al.: Virtual Reality Simulation Training for Cardiopulmonary Resuscitation After Cardiac Surgery: Face and Content Validity Study, JMIRSerious Games, vol. 10(1), e30456, 2022. doi: 10.2196/30456.
  • [77] Sanders J., Bowden T., Woolfe-Loftus N., Sekhon M., Aitken L.: Predictors of health-related quality of life after cardiac surgery: a systematic review, Healthand Quality of Life Outcomes, vol. 20(1), pp. 1–12, 2022. doi: 10.1186/s12955-022-01980-4.
  • [78] Sharma R., Singh D., Gaur P., Joshi D.: Intelligent automated drug administration and therapy: future of healthcare, Drug Delivery and Translational Research, vol. 11, pp. 1878–1902, 2021. doi: 10.1007/s13346-020-00876-4.
  • [79] Sibilitz K.L., Berg S.K., Rasmussen T.B., Risom S.S., Thygesen L.C., Tang L.,Hansen T.B.,et al.: Cardiac rehabilitation increases physical capacity butnot mental health after heart valve surgery: a randomised clinical trial, Heart, vol. 102(24), pp. 1995–2003, 2016. doi: 10.1136/heartjnl-2016-309414.
  • [80] Silva J., Southworth M., Raptis C., Silva J.: Emerging applications of virtual reality in cardiovascular medicine, JACC: Basic to Translational Science, vol. 3(3), pp. 420–430, 2018. doi: 10.1016/j.jacbts.2017.11.009.
  • [81] Skalidis I., Muller O., Fournier S.: CardioVerse: The cardiovascular medicine inthe era of Metaverse,Trends in Cardiovascular Medicine, vol. 33(8), pp. 471–476. doi: 10.1016/j.tcm.2022.05.004.
  • [82] Szpala S., Wierzbicki M., Guiraudon G., Peters T.M.: Real-time fusion of endoscopic views with dynamic 3-D cardiac images: a phantom study, IEEE Transactions on Medical Imaging, vol. 24(9), pp. 1207–1215, 2005. doi: 10.1109/tmi.2005.853639.
  • [83] Talbot H., Spadoni F., Duriez C., Sermesant M., O’Neill M., Jaïs P., Cotin S., Delingette H.: Interactive training system for interventional electrocardiology procedures, Medical Image Analysis, vol. 35, pp. 225–237, 2017. doi: 10.1016/j.media.2016.06.040.
  • [84] Theingi S., Leopold I., Ola T., Cohen G.S., Maresky H.S.: Virtual Reality asa Non-Pharmacological Adjunct to Reduce the Use of Analgesics in Hospitals, Journal of Cognitive Enhancement, vol. 6, pp. 108–113, 2022. doi: 10.1007/s41465-021-00212-9.
  • [85] Valdis M., Chu M.W.A., Schlachta C.M., Kiaii B.: Validation of a Novel VirtualReality Training Curriculum for Robotic Cardiac Surgery: A Randomized Trial, Innovations, vol. 10(6), pp. 383–388, 2015. doi: 10.1097/imi.0000000000000222.
  • [86] Valdis M., Chu M.W.A., Schlachta C.M., Kiaii B.: Evaluation of robotic cardiac surgery simulation training: A randomized controlled trial, Journal of Thoracicand Cardiovascular Surgery, vol. 151(6), pp. 1498–1505.e2, 2016. doi: 10.1016/j.jtcvs.2016.02.016.
  • [87] Venkatesan M., Mohan H., Ryan J.R., Schurch C.M., Nolan G.P., Frakes D.H.,Coskun A.F.: Virtual and augmented reality for biomedical applications, Cell Reports Medicine, vol. 2(7), 100348, 2021. doi: 10.1016/j.xcrm.2021.100348.
  • [88] Vervoort D., Fiedler A.G.: Virtual reality, e-learning, and global cardiac surgical capacity-building, Journal of Cardiac Surgery, vol. 36(6), pp. 1835–1837, 2021. doi: 10.1111/jocs.15498.
  • [89] Vigil C., Lasso A., Ghosh R.M., Pinter C., Cianciulli A., Nam H.H., et al.: Modeling Tool for Rapid Virtual Planning of the Intracardiac Baffle in Double-Outlet Right Ventricle, Annals of Thoracic Surgery, vol. 111(6), pp. 2078–2083, 2021. doi: 10.1016/j.athoracsur.2021.02.058.
  • [90] Villanueva C., Xiong J., Rajput S.: Simulation-based surgical education in cardiothoracic training, ANZ Journal of Surgery, vol. 90(6), pp. 978–983, 2020. doi: 10.1111/ans.15593.
  • [91] Vinck E.E., Smood B., Barros L., Palmen M.: Robotic cardiac surgery trainingduring residency: Preparing residents for the inevitable future, Laparoscopic, Endoscopic and Robotic Surgery, vol. 5(2), pp. 75–77, 2022. doi: 10.1016/j.lers.2022.03.002.
  • [92] Wang C., Zhang L., Qin T., Xi Z., Sun L., Wu H., Li D.: 3D printing inadult cardiovascular surgery and interventions: a systematic review, Journal of Thoracic Disease, vol. 12(6), 3227, 2020. doi: 10.21037/jtd-20-455.
  • [93] Wang L., Liu J., Xie W., Chen Q., Cao H.: Condition notification assistedby virtual reality technology reduces the anxiety levels of parents of childrenwith simple CHD: a prospective randomised controlled study, Cardiology in theYoung, vol. 32(11), pp. 1801–1806, 2022. doi: 10.1017/S104795112100500X.
  • [94] Watanabe G., Ishikawa N.: da Vinci surgical system, Kyobu Geka (JapaneseJournal of Thoracic Surgery), vol. 67(8), pp. 686–689, 2014.
  • [95] Wierzbicki M., Drangova M., Guiraudon G., Peters T.: Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries, Medical Image Analysis, vol. 8(3), pp. 387–401, 2004. doi: 10.1016/j.media.2004.06.014.
  • [96] Xue H., Sun K., Yu J., Chen B., Chen G., Hong W., Yao L., Wu L.: Three-dimensional echocardiographic virtual endoscopy for the diagnosis of congenital heart disease in children, International Journal of Cardiovascular Imaging, vol. 28(6), pp. 851–859, 2010. doi: 10.1007/s10554-010-9649-5.
  • [97] Yamada T., Osako M., Uchimuro T., Yoon R., Morikawa T., Sugimoto M.,Suda H., Shimizu H.: Three-Dimensional Printing of Life-Like Models for Simulation and Training of Minimally Invasive Cardiac Surgery, Innovations, vol. 12(6), pp. 459–465, 2017. doi: 10.1177/155698451701200615.
  • [98] Yeh L.R., Chen W.C., Chan H.Y., Lu N.H., Wang C.Y., Twan W.H., Du W.C., et al.: Integrating ECG monitoring and classification via IoT and deep neural networks, Biosensors, vol. 11(6), 188, 2021. doi: 10.3390/bios11060188.
  • [99] Yoo S., Hussein N., Peel B., Coles J., Arsdell G., Honjo O., Haller C., Lam C.,Seed M., Barron D.: 3D Modeling and Printing in Congenital Heart Surgery: Entering the Stage of Maturation, Frontiers in Pediatrics, vol. 9, 621672, 2021. doi: 10.3389/fped.2021.621672.
  • [100] Zanatta F., Farhane-Medina N., Adorni R., Steca P., Giardini A., D’Addario M., Pierobon A.: Combining robot-assisted therapy with virtual reality or usingit alone? A systematic review on health-related quality of life in neurological patients, Health and Quality of Life Outcomes, vol. 21(1), 18, 2023. doi: 10.1186/s12955-023-02097-y.
  • [101] Zell E., Dyck E., Kohsik A., Grewe P., Flentge D., Winter Y., Piefke M., et al.: OctaVis: A Virtual Reality System for Clinical Studies and Rehabilitation. In: Eurographics 2013 – Dirk Bartz Prize, Girone, Spain, pp. 9–12,2013. doi: 10.2312/conf/EG2013/med/009-012.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d9fded9-91b4-4021-8ae9-c8d3eafc47ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.