PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Eco-friendly production of foamed geopolymers based on mine waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented work aims to show an alternative solution for replacing mineral resources used in producing geopolymers with waste materials with good thermal conductivity parameters and a stable structure. Design/methodology/approach In the present study, a material that is coal mine waste from the Wieczorek mine in Silesia was used to produce geopolymers. In the preparation phase of geopolymer foams, the ground and calcined material were combined with a 10M sodium silicate hydroxide solution and a foaming agent reinforced with hemp fibres. The curing process was carried out in a laboratory dryer at 75°C for 24 h. After 28 days after the preparation of the samples, the strength and thermal insulation properties were tested. Findings The tested effect of adding fibres on the mechanical strength of foamed geopolymers proves the strength improvement. The use of short hemp fibres increases strength compared to samples without reinforcement. Hemp fibre in 0.5% also reduced the thermal conductivity coefficient by almost 15%. Research limitations/implications Wastes generated during coal mining are interesting research material regarding their use as precursors in geopolymerisation. An important issue is to improve their preparation process from crushing to geopolymers' preparation phase. The chemical composition of shales is a limitation in their use on an industrial scale. Therefore, it is also recommended to test with various types of nano additives that can effectively affect the properties of the finished product. Practical implications The properties of coal waste from the Wieczorek mine in Silesia show its high potential for use in geopolymer synthesis. The use of the waste is ecological as well as economical, making the material competitive. Originality/value A novelty in the production of geopolymers is the production of porous materials using waste from the mining industry.
Rocznik
Strony
341--349
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Faculty of Materials Engineering and Physics, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
  • Faculty of Materials Engineering and Physics, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
  • Faculty of Materials Engineering and Physics, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
  • Faculty of Materials Engineering and Physics, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
Bibliografia
  • [1] Vital Climate Graphics UNEP/GRID-Arendal – Publications – Vital Climate Change Graphics. Available from: https://www.grida.no/publications/254 (access in: 20.01.2023)
  • [2] Statistical Review of World Energy. Available from: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (access in: 20.01.2023)
  • [3] T.Z. Błaszczyński, M.R. Król, Geopolymer ecobinders, Builder 25/8 (2021) 72-77 (in Polish). DOI: https://doi.org/10.5604/01.3001.0015.0421
  • [4] W. Zhang, X. Liu, Z. Zhang, Mechanical, expansion and rheological properties of circulating fluidized bed fly ash based ecological cement: A critical review, International Journal of Minerals, Metallurgy and Materials 29 (2022) 1670-1682. DOI: https://doi.org/10.1007/s12613-021-2403-2
  • [5] Z. Ghouleh, Y. Shao, S. Zhang, Performance of eco-concrete made from waste-derived eco-cement, Journal of Cleaner Production 289 (2021) 125758. DOI: https://doi.org/10.1016/j.jclepro.2020.125758
  • [6] A. Kunche, B. Mielczarek, Application of system dynamic modelling for evaluation of CO 2 emissions and expenditure for captive power generation scenarios in the cement industry, Energies 14/11 (2021) 3115. DOI: https://doi.org/10.3390/en14113115
  • [7] G. Silva, S. Kim, R. Aguilar, J. Nakamatsu, Natural fibers as reinforcement additives for geopolymers: a review of potential eco-friendly applications to the construction industry, Sustainable Materials and Technologies 23 (2020) e00132. DOI: https://doi.org/10.1016/j.susmat.2019.e00132
  • [8] B. Ren, Y. Zhao, H. Bai, S. Kang, T. Zhang, S. Song, Eco-friendly geopolymer prepared from solid wastes: A critical review, Chemosphere 267 (2021) 128900. DOI: https://doi.org/10.1016/j.chemosphere.2020.128900
  • [9] L. Imtiaz, S.K.U. Rehman, S.A. Memon, M.K. Khan, M.F. Javed, A Review of Recent Developments and Advances in Eco-Friendly Geopolymer Concrete, Applied Sciences 10/21 (2020) 7838. DOI: https://doi.org/10.3390/app10217838
  • [10] J. Zhao, L. Tong, B. Li, T. Chen, C. Wang, G. Yang, Y. Zheng, Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment, Journal of Cleaner Production 307 (2021) 127085. DOI: https://doi.org/10.1016/j.jclepro.2021.127085
  • [11] T. Pantongsuk, P. Kittisayarm, N. Muenglue, S. Benjawan, P. Thavorniti, C. Tippayasam, S. Nilpairach, G. Heness, D. Chaysuwan, Effect of hydrogen peroxide and bagasse ash additions on thermal conductivity and thermal resistance of geopolymer foams, Materials Today Communications 26 (2021) 102149. DOI: https://doi.org/10.1016/j.mtcomm.2021.102149
  • [12] D. Kioupis, A. Zisimopoulou, S. Tsivilis, G. Kakali, Development of porous geopolymers foamed by aluminum and zinc powders, Ceramics International 47/18 (2021) 26280-26292. DOI: https://doi.org/10.1016/j.ceramint.2021.06.037
  • [13] M. Sitarz, B. Figiela, M. Łach, K. Korniejenko, K. Mróz, J. Castro-Gomes, I. Hager, Mechanical response of geopolymer foams to heating ‒ managing coal gangue in fire-resistant materials technology, Energies 15/9 (2022) 3363. DOI: https://doi.org/10.3390/en15093363
  • [14] V. Kočí, R. Černý, Directly foamed geopolymers: A review of recent studies, Cement and Concrete Composites 130 (2022) 104530. DOI: https://doi.org/10.1016/j.cemconcomp.2022.104530
  • [15] K. Walbrück, F. Maeting, S. Witzleben, D. Stephan, Natural Fiber Stabilized Geopolymer Foam - A review, Materials 13/14 (2020) 3198. DOI: https://doi.org/10.3390/ma13143198
  • [16] A. Hajimohammadi, T. Ngo, P. Mendis, Enhancing the strength of pre-made foams for foam concreto applications, Cement and Concrete Composites 87 (2018) 164-171. DOI: https://doi.org/10.1016/j.cemconcomp.2017.12.014
  • [17] Y. Luna-Galiano, C. Leiva, C. Arenas, C. Fernández-Pereira, Fly ash based geopolymeric foams using silica fume as pore generation agent. Physical, mechanical and acoustic properties, Journal of Non-Crystalline Solids 500 (2018) 196-204. DOI: https://doi.org/10.1016/j.jnoncrysol.2018.07.069
  • [18] C. Bai, T. Ni, Q. Wang, H. Li, P. Colombo, Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent, Journal of the European Ceramic Society 38/2 (2018) 799-805. DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.09.021
  • [19] H.A. Mahmoud, T.A. Tawfik, M.M. Abd El-razik, A.S. Faried, Mechanical and acoustic absorption properties of lightweight fly ash/slag-based geopolymer concreto with various aggregates, Ceramics International 49/13 (2023) 21142-21154. DOI: https://doi.org/10.1016/j.ceramint.2023.03.244
  • [20] W. Sekkal, A. Zaoui, Thermal and acoustic insulation properties in nanoporous geopolymer nanocomposite, Cement and Concrete Composites 138 (2023) 104955. DOI: https://doi.org/10.1016/j.cemconcomp.2023.104955
  • [21] C. Leiva, Y. Luna-Galiano, C. Arenas, B. Alonso-Fariñas, C. Fernández-Pereira, A porous geopolymer based on aluminum-waste with acoustic properties, Waste Management 95 (2019) 504-512. DOI: https://doi.org/10.1016/j.wasman.2019.06.042
  • [22] A. Alzaza, M. Mastali, P. Kinnunen, L. Korat, Z. Abdollahnejad, V. Ducman, M. Illikainen, Production of lightweight alkali activated mortars using mineral wools, Materials 12/10 (2019) 1695. DOI: https://doi.org/10.3390/ma12101695
  • [23] L. Zhang, F. Zhang, M. Liu, X. Hu, Novel sustainable geopolymer based syntactic foams: An eco-friendly alternative to polymer based syntactic foams, Chemical Engineering Journal 313 (2017) 74-82. DOI: https://doi.org/10.1016/j.cej.2016.12.046
  • [24] V. Ducman, L. Korat, Characterization of geopolymer fly-ash based foams obtained with the addition of Al. powder or H 2O 2 as foaming agents, Materials Characterization 113 (2016) 207-213. DOI: https://doi.org/10.1016/j.matchar.2016.01.019
  • [25] K. Walbrück, L. Drewler, S. Witzleben, D. Stephan, Factors influencing thermal conductivity and compressive strength of natural fiber-reinforced geopolymer foams, Open Ceramics 5 (2021) 100065. DOI: https://doi.org/10.1016/j.oceram.2021.100065
  • [26] L. Senff, R.M. Novais, J. Carvalheiras, J.A. Labrincha, Eco-friendly approach to enhance the mechanical performance of geopolymer foams: Using glass fibre waste coming from wind blade production, Construction and Building Materials 239 (2020) 117805. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117805
  • [27] A. Islam, U.J. Alengaram, M.Z. Jumaat, N.B. Ghazali, S. Yusoff, I.I. Bashar, Influence of steel fibers on the mechanical properties and impact resistance of lightweight geopolymer concrete, Construction and Building Materials 152 (2017) 964-977. DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.092
  • [28] N. Zhang, B. Wang, D. Yue, D. Pan, H. Wang, J. Li, Y. Zhang, Waste liquid-added regeneration activator to enhance the pore structure and compressive strength of geopolymer-foam-fiber: A sustainable strategy of kenaf fiber pretreatment and reuse, Process Safety and Environmental Protection 170 (2023) 536-544. DOI: https://doi.org/10.1016/j.psep.2022.12.011
  • [29] K. Dhasindrakrishna, K. Pasupathy, S. Ramakrishnan, J. Sanjayan, Rheology and elevated temperaturę performance of geopolymer foam concrete with varying PVA fibre dosage, Materials Letters 328 (2022) 133122. DOI: https://doi.org/10.1016/j.matlet.2022.133122
  • [30] Z. Moujoud, S. Sair, H. Ait Ousaleh, I. Ayouch, A. El Bouari, O. Tanane, Geopolymer composites reinforced with natural Fibers: A review of recent advances in processing and properties, Construction and Building Materials 388 (2023) 131666. DOI: https://doi.org/10.1016/j.conbuildmat.2023.131666
  • [31] K. Korniejenko, W.-T. Lin, H. Šimonová, Mechanical Properties of Short Polymer Fiber-Reinforced Geopolymer Composites, Journal of Composites Science 4/3 (2020) 128. DOI: https://doi.org/10.3390/jcs4030128
  • [32] Y. Zhang, T.-C. Ling, Reactivity activation of waste coal gangue and its impact on the properties of cement based materials – A review, Construction and Building Materials 234 (2020) 117424. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117424
  • [33] Y.S. Wang, Y. Alrefaei, J.G. Dai, Silico-alumino- phosphate and alkali Aluminosilicate Geopolymers: a comparative review. Frontiers in Materials 6 (2019) 106. DOI: https://doi.org/10.3389/fmats.2019.00106
  • [34] N. Mir, S.A. Khan, A. Kul, O. Sahin, M. Lachemi, M. Sahmaran, M. Koc, Life cycle assessment of binary recycled ceramic tile and recycled brick waste-based geopolymers, Cleaner Materials 5 (2022) 100116. DOI: https://doi.org/10.1016/j.clema.2022.100116
  • [35] PN-EN 196-1:2016-07. Test methods for cement – Part 1: Determination of strength, PKN, Warszawa, 2016 (in Polish). Available from: https://sklep.pkn.pl/pn-en-196-1-2016-07p.html (access in: 20.01.2023)
  • [36] M. Łach, Geopolymer foams ‒ Will they ever become a viable alternative to popular insulation materials? ‒ A critical opinion, Materials 14/13 (2021) 3568. DOI: https://doi.org/10.3390/ma14133568
  • [37] Y. Cui, D. Wang, Effects of Water on Pore Structure and Thermal Conductivity of Fly Ash-Based Foam Geopolymers. Advances in Materials Science and Engineering 2019 (2019) 3202794. DOI: https://doi.org/10.1155/2019/3202794
  • [38] K. Korniejenko, M. Łach, M. Hebdowska-Krupa, J. Mikuła, Impact of flax fiber reinforcement on mechanical properties of solid and foamed geopolymer concrete, Advanced Technology Innovations 6/1 (2021) 11-20. DOI: https://doi.org/10.46604/aiti.2021.5294
  • [39] M. Łach, D. Mierzwiński, K. Korniejenko, J. Mikuła, Geopolymer foam as a passive fire protection, MATEC Web of Conferences 247 (2018) 00031. DOI: https://doi.org/10.1051/matecconf/201824700031
  • [40] M. Łach, J. Mikuła, W.T. Lin, P. Bazan, B. Figiela, K. Korniejenko, Development and Characterization of Thermal Insulation Geopolymer Foams Based on Fly Ash, Proceedings of Engineering and Technology Innovation 16 (2020) 23-29. DOI: https://doi.org/10.46604/peti.2020.5291
  • [41] T. Alomayri, I.M. Low, Synthesis and characterization of mechanical properties in cotton fiber-reinforced geopolymer composites, Journal of Asian Ceramic Societies 1/1 (2013) 30-34. DOI: https://doi.org/10.1016/j.jascer.2013.01.002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d9f3552-a67d-4fa0-b975-16d9a70974c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.