PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Earthquake protection of reinforced concrete structures with infill walls using PUFJ and FRPU systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ochrona przed trzęsieniami ziemi konstrukcji żelbetowych ze ścianami wypełniającymi przy użyciu systemów PUFJ i FRPU
Języki publikacji
EN
Abstrakty
EN
Advancements in technology and material sciences lead new solutions to be used in civil engineering. PolyUrethane Flexible Joints (PUFJ) and Fiber Reinforced PolyUrethanes (FRPU) are among those innovative solutions. PUFJ implemented systems comprise of seismic preventive buffer material between masonry infill walls and reinforced concrete (RC) frames, whereas FRPU solution is designed for covering the wall surfaces with thin composite strips. Both methods are primarily developed for increasing the ductility capacities of buildings while sustaining the overall structural strength without compromising on the safety of these systems against earthquakes. In this article, test results of the quasi-static cyclic experiments as well as dynamic tests on the shake tables including harmonic forces operating in resonance are presented. Moreover, numerical analyses are performed in order to comprehend the behavior of PUFJ implemented frames constituted with different masonry materials than above which are under various loading conditions. The outcomes confirmed the high efficiency of the proposed solutions, which at the same time meet the strict requirements of the modern seismic standards.
PL
Postępy w technologii i materiałoznawstwie prowadzą do nowych rozwiązań wprowadzanych w inżynierii lądowej. Wśród tych innowacyjnych rozwiązań znajdują się podatne złącza poliuretanowe (PUFJ) i poliuretany wzmocnione włóknami (FRPU). Systemy PUFJ instalowane są pomiędzy murowanymi ścianami wypełniającymi a ramami żelbetowymi jako anty-sejsmiczny element buforowy, natomiast systemy FRPU są przeznaczone do wzmacniania powierzchni ścian cienkimi pasami kompozytowymi. Obie metody zostały opracowane w celu zwiększenia ciągliwości budynków, przy jednoczesnym utrzymaniu ich ogólnej nośności, a tym samym w celu zwiększenia bezpieczeństwa użytkowania tych budynków w trakcie trzęsień ziemi. W artykule przedstawiono wyniki badań elementów w skali naturalnej pod quasi-statycznymi obciążeniami cyklicznymi oraz obciążeniami dynamicznymi na stole sejsmicznym i pod działaniem sił harmonicznych w rezonansie. Ponadto zostały przeprowadzone analizy numeryczne, mające na celu poznanie zachowania się podobnych konstrukcji z innymi materiałami murowymi współpracującymi z PUFJ, które poddane zostały różnym warunkom obciążenia. Wyniki potwierdziły wysoką skuteczność proponowanych rozwiązań, które jednocześnie spełniają surowe wymagania współczesnych norm sejsmicznych.
Rocznik
Strony
199--216
Opis fizyczny
Bibliogr. 35 poz., il., tab.
Twórcy
  • Cracow University of Technology, Faculty of Civil Engineering, Cracow, Poland
  • Cracow University of Technology, Faculty of Civil Engineering, Cracow, Poland
Bibliografia
  • [1] F. Longo, L. Wiebe, F. da Porto and C. Modena, “Seismic response history analysis including out-of plane collapse of unreinforced masonry infill walls in RC frame structures”, in Proceedings of the 16th International Brick and Block Masonry Conference, 26-30 June 2016, Padova, Italy, C. Modena, et al., Eds. London: CRC Press, 2016, pp. 1235-1244.
  • [2] M. Preti, L. Migliorati, and E. Giuriani, “Experimental testing of engineered masonry infill walls for postearthquake structural damage control”, Bulletin of Earthquake Engineering, vol. 13, no. 7, pp. 2029-2049, 2014, doi: 10.1007/s10518-014-9701-2.
  • [3] M.S. Razzaghi and M. Javidnia, “Evaluation of the effect of infill walls on seismic performance of RC dual frames”, International Journal of Advanced Structural Engineering, vol. 7, no. 1, pp. 49-54, 2015, doi: 10.1007/s40091-015-0081-x.
  • [4] H. Sucuoglu, “Implications of masonry infill and partition damage in performance perception in residential buildings after a moderate earthquake”, Earthquake Spectra, vol. 29, no. 2, pp. 661-667, 2013, doi: 10.1193/1.4000147.
  • [5] P.G. Asteris, “Lateral stiffness of brick masonry infilled plane frames”, Journal of Structural Engineering, vol. 129, no. 8, pp. 1071-1079, 2003, doi: 10.1061/(ASCE)0733-9445(2003)129:8(1071).
  • [6] A. Kocak, A. Kalyoncuoglu and A. Zengin, “Effect of infill wall and wall openings on the fundamental period of RC buildings”, in Earthquake Resistant Engineering Structures IX, vol. 132, C.A. Brebbia, et. al., Eds. University of A Coruña, Spain: WIT Press, 2013, pp. 121-131.
  • [7] C.V.R. Murty and S. K. Jain, “Beneficial influence of masonry infill walls on seismic performance of RC frame buildings”, presented at 12th World Conference on Earthquake Engineering, 30 January-4 February 2000, Auckland, New Zealand, 2000.
  • [8] L. Hermanns, A. Fraile, E. Alarcón, and R. Álvarez, “Performance of buildings with masonry infill walls during the 2011 Lorca earthquake”, Bulletin of Earthquake Engineering, vol. 12, no. 5, pp. 1977-1997, 2014, doi: 10.1007/s10518-013-9499-3.
  • [9] P. Ricci, F. De Luca, and G.M. Verderame, “6th April 2009 L’Aquila earthquake, Italy: reinforced concrete building performance”, Bulletin of Earthquake Engineering, vol. 9, no. 1, pp. 285-305, 2011, doi: 10.1007/s10518-010-9204-8.
  • [10] H. Sezen, et al., Structural Engineering Reconnaissance of the August 17, 1999, Kocaeli (Izmit), Turkey, Earthquake. Berkeley, CA, USA: Pacific Earthquake Engineering Research Center PEER Report 2000/09, 2000.
  • [11] J. Atalić, et al., Potresno inženjerstvo, obnova zidanih zgrada. Zagreb, Croatia: Gradevinski fakultet Zagreb, 2021 (in Croatian).
  • [12] M. Crnogorac, et al., Urgentni Program Potresne Obnove Uppo. Zagreb, Croatia. Gradevinski fakultet Sveučilišta u Zagrebu Hrvatska komora inženjera graževinarstva, 2020 (in Croatian).
  • [13] A.T. Akyildiz, et al., “Change in stiffness of damaged RC frame with masonry infills connected with stiff and flexible interfaces”, in Brick and Block Masonry - From Historical to Sustainable Masonry, J. Kubica, et al., Eds. London: CRC Press, 2020, pp. 546-552.
  • [14] American Society of Civil Engineers (ASCE/SEI 41), Seismic Rehabilitation of Existing Buildings. Reston, VA, USA: ASCE/SEI 41, 2001.
  • [15] H. Varum, A. Furtado, H. Rodrigues, J. Dias-Oliveira, N. Vila-Pouca, and A. Arêde, “Seismic performance of the infill masonry walls and ambient vibration tests after the Ghorka 2015, Nepal earthquake”, Bulletin of Earthquake Engineering, vol. 15, no. 3, pp. 1185-1212, 2017, doi: 10.1007/s10518-016-9999-z.
  • [16] A. Kwiecień, et al., “PUFJ and FRPU earthquake protection of infills tested in resonance”, in 1st Croatian Conference on Earthquake Engineering 1CroCEE, 22-24 March 2021, Zagreb, Croatia, S. Lakušić & J. Atalić, Eds. Zagreb: University of Zagreb Faculty of Civil Engineering, 2021, pp. 465-475.
  • [17] P. Triller, et al., “Preliminary in-plain shear test of damaged infill strengthened by FRPU”, in 10th International Conference on FRP Composites in Civil Engineering CICE 2021, vol. 128, A. Ilki, et al., Eds. Cham: Springer, 2021, doi: 10.1007/978-3-030-88166-5_162.
  • [18] S. Altin, Ö. Anil, M.E. Kara, and M. Kaya, “An experimental study on strengthening of masonry infilled RC frames using diagonal CFRP strips”, Composites Part B: Engineering, vol. 39, no. 4, pp. 680-693, 2008, doi: 10.1016/j.compositesb.2007.06.001.
  • [19] I. Erdem, U. Akyuz, U. Ersoy, and G. Ozcebe, “An experimental study on two different strengthening techniques for RC frames”, Engineering Structures, vol. 28, no. 13, pp. 1843-1851, 2006, doi: 10.1016/j.engstruct.2006. 03.010.
  • [20] E. Yuksel, et al., “Performance of alternative CFRP retrofitting schemes used in infilled RC frames”, Construction and Building Materials, vol. 24, no. 4, pp. 596-609, 2010, doi: 10.1016/j.conbuildmat.2009.09.005.
  • [21] A.S. Tasligedik, S. Pampanin and A. Palermo, “Low damage seismic solutions for non-structural drywall partitions”, presented at the Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics (VEESD 2013), 28-30 August 2013, Vienna, Austria, 2013.
  • [22] M. Preti, V. Bolis and A. Stavridis, “Design of masonry infill walls with sliding joints for earthquake structural damage control”, in Proceedings of the 16th International Brick and Block Masonry Conference, 26-30 June 2016, Padova, Italy, C. Modena, et. al., Eds. London: CRC Press, 2016.
  • [23] A. Kwiecień, Polimerowe złącza podatne w konstrukcjach murowych i betonowych, Monografia nr 414 Politechnika Krakowska, Seria Inżynieria Lądowa. Kraków, 2012 (in Polish).
  • [24] A.T. Akyildiz, et al., “Preliminary in-plane shear test of infills protected by PUFJ interfaces”, in Brick and Block Masonry - From Historical to Sustainable Masonry, J. Kubica, et al., Eds. London: CRC Press, 2020, pp. 968-975.
  • [25] T. Rousakis, et al., “Flexible joints between RC frames and masonry infill for improved seismic performance – shake table tests”, in Brick and Block Masonry – From Historical to Sustainable Masonry, J. Kubica, et al., Eds. London: CRC Press, 2020, pp. 499-507.
  • [26] T. Rousakis et al., “Deformable polyurethane joints and fibre grids for resilient seismic performance of reinforced concrete frames with orthoblock brick infills”, Polymers, vol. 12, no. 12, art. no. 2869, 2020, doi: 10.3390/polym12122869.
  • [27] A.T. Akyildiz, A. Kowalska-Koczwara, and Ł. Hojdys, “Seismic protection of RC buildings by polymeric infill wall-frame interface”, Polymers, vol. 13, no. 10, art. no. 1577, 2021, doi: 10.3390/polym13101577.
  • [28] T. Rousakis, V. Vanian, T. Fanaradelli, and E. Anagnostou, “3D FEA of infilled RC framed structures protected by seismic joints and FRP jackets”, Applied Sciences, vol. 11, no. 14, art. no. 6403, 2021, doi: 10.3390/app11146403.
  • [29] EN 1998-1:2004 Eurocode 8: Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings. Brussels, Belgium, 2004.
  • [30] Turkish Ministry of Interior, Disaster and Emergency Management Presidency, Turkish Seismic Design Code 2018. Ankara, Turkey, 2018.
  • [31] A.Viskovic, L. Zuccarino, A. Kwiecień, B. Zając, and M. Gams, “Quick seismic protection of weak masonry infilling in filled framed structures using flexible joints”, Key Engineering Materials, vol. 747, pp. 628-637, 2017, doi: 10.4028/www.scientific.net/kem.747.628.
  • [32] P. Kisiel, “Model approach for polymer flexible joints in precast elements joints of concrete pavements”, Ph.D. thesis, Cracow University of Technology, Cracow, Poland, 2018.
  • [33] J.P. Moehle, “Displacement-Based design of RC structures subjected to earthquakes”, Earthquake Spectra, vol. 8, no. 3, pp. 403-428, 1992, doi: 10.1193/1.1585688.
  • [34] M.J.N. Priestley, “Myths and fallacies in earthquake engineering”, Bulletin of the New Zealand Society for Earthquake Engineering, vol. 26, no. 3, pp. 329-341, 1993, doi: 10.5459/bnzsee.26.3.329-341.
  • [35] M.J.N. Priestly, “Performance based seismic design”, presented at 12th World Conference on Earthquake Engineering, 30 January-4 February 2000, Auckland, New Zealand, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d9a8fe0-2eee-48d0-9db2-3e2b44165310
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.