PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of a magnetic field in the assessment of the operating loads of pneumatic tires

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Steel is a typical construction material with ferromagnetic properties. This material is often used as a structural component of composites whose task is to transfer mechanical loads. This function is performed by the steel wires placed inside the tires. The aim of the preliminary tests was to determine the influence of air pressure changes in the pneumatic wheel on the distribution of the magnetic field observed outside the tire. The research used a magnetostrictive sensor that reacts to changes in magnetic induction. A sensor with three perpendicular measurement directions was used, and the components of the magnetic induction vector were measured at selected measurement points located in the space surrounding the tested tire. During the tests, measurements were made of the tire’s magnetic field under various load conditions. The results confirmed the occurrence of measurable effects of changes in the magnetic field distribution of the tire depending on the pressure inside.
Czasopismo
Rocznik
Strony
53--62
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering; Krasińskiego 8, 40-019 Katowice, Poland
  • Opole University of Technology, Faculty of Mechanical Engineering; Prószkowska 76, 45-758 Opole, Poland
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering; Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • 1. Mitschke, M. Dynamika Samochodu. T. 2 Drgania. Wydawnictwa Komunikacji i Łączności: Warsaw, Poland, 1989. 266 s. [In Polish: Mitschke M. Car dynamics. Volume 2 Vibrations. Transport and Communication Publishers: Warsaw, Poland. 1989. 266 p.].
  • 2. Warczek, J. & Burdzik, R. & Konieczny, Ł. Research on the effectiveness of the time shutdown of the damper to improve vibroisolation. Vibroengineering Procedia. 2017. Vol. 13. P. 37-40.
  • 3. Y-Yokohama. Tire Knowledge. Available at: https//www.y-yokohama.com/global/product/tire/learn/knowledge/nomenclature.
  • 4. DadBlog. Tyre Cross Section. Available at: https//Dadbloguk.com/wp-content/uploads/2017/10/Tyre-cross-section.jpg.
  • 5. Andrzejewski, R. Dynamika pneumatycznego koła jezdnego. Wydawnictwa Naukowo-Techniczne: Warszawa. Polska. 2010. 176 s. [In Polish: Andrzejewski R. Dynamics of the Pneumatic Road Wheel. Scientific and Technical Publishing House: Warsaw. Poland. 2010. 176 p.]
  • 6. Miliken, W. & Miliken, D. Race Car Vehicle Dynamics. SAE International. Warrendale. PA. USA. 1994. 918 p.
  • 7. Warczek, J. & Burdzik, R. & Konieczny, Ł. & Siwiec, G. Frequency analysis of noise generated by pneumatic wheels. Archives of Acoustics. Vol. 42. No. 3. 2017. P. 459-467.
  • 8. Halgamuge, M.N. & Abeyrathne, C.D. & Mendis, P. Measurement and analysis of electromagnetic fields from trams, trains and hybrid cars. Radiation Protection Dosimetry. October 2010. Vol. 141. No. 3. P. 255-268.
  • 9. Ptitsyna, N.G. & Ponzetto, A. & Kopytenko, Y.A. & Ismagilov, V.S. & Korobeinikov, A.G. Electric vehicle magnetic fields and their biological relevance. Journal of Scientific Research and Reports. 2014. Vol. 3. No. 13. P. 1753-1770.
  • 10. Vedholm, K. & Hamnerius, Y. Personal exposure resulting from low level low frequency electromagnetic fields in automobiles. PhD thesis. Department of Electromagnetics. Chalmers University of Technology: Gothenburg. Sweden. 1996. 167 p.
  • 11. Brol, S. & Szegda, A. Magnetism of automotive wheels with pneumatic radial tires. Measurement. 2018. Vol. 126. P. 37-45.
  • 12. Brol, S. Application of magnetic sensor for magnetic profile (1D) and surface (2D) measurement of automotive wheels. Sensors. 2021. Vol. 7. No. 2475. P. 1-14.
  • 13. Stankowski, S. & Kessi, A. & Be’cheiraz, O. & Meier-Engel, K. & Meier, M. Low frequency magnetic fields induced by car tire magnetization. Health Physics. 2006. Vol 90(2). P 148-153.
  • 14. Milham, S. & Hatfield, J.B. & Tell, R. Magnetic fields from steel-belted radial tires: implications for epidemiologic studies. Bioelectromagnetics. 1999. Vol. 20(7). P. 440-445.
  • 15. Jacobs W.L. & Dietrich, F.M. & Feero, W.E. & Brecher, A. Assessment of magnetic fields produced by spinning steel belted radial tires. In: EPRI/DOE Annual Review of Research on Biological Effects of Electric and Magnetic Fields from the Generation. Delivery and Use of Electricity: Tuscon, AZ, USA. 1998. P. 64-72.
  • 16. Kawase, M. & Tazaki, S. U.S. Patent 6404182 B1. Method for Detecting the Magnetic Field of a Tire. Publ. 11 June 2002. 49 p.
  • 17. Kawase, M. & Tazaki, S. & Kaneko, H. & Sato, H. & Urayama, N. U.S. Patent 6246226 B1. Method and Apparatus for Detecting Tire Revolution Using Magnetic Field. Publ. 12 June 2002. 18 p.
  • 18. LeGoff, A. & Lacoume, J.-L. & Blanpain, R. & Dauvé, S. & Serviere, C. Automobile wheel clearance estimation using magnetism. Mechanical Systems and Signal Processing. 2012. Vol. 26. P. 315-319.
  • 19. Szegda, A. & Brol, S. Measurement device of magnetic flux density of tire. Proceedings of the Institute of Vehicles. 2017. Vol. 2. P. 121-128.
  • 20. Gontarz, S. & Radkowski, S. Impact of different factors on relationship between stress and eigenmagnetic field in steel specimen. IEEE Transactions on Magnetics. 2012. Vol. 48(3). P. 1143-1154.
  • 21. Szulim, P. & Maczak, J. & Rokicki, K. & Lubikowski, K. Application of low-cost magnetic field and acceleration sensors in diagnostics of large-size structures. Diagnostyka. 2013. Vol. 14. P. 43-49.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d96cefb-4eaf-4016-bf36-74701471c0b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.