PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Autothermal Reforming of Diesel Oil for PdCeCrFeCu/Al2O3-Catalyzed Hydrogen Production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To make clear the feasibility and influence factors of diesel fuel autothermal reforming to hydrogen, PdCeCr-FeCu/Al2O3 catalyst was prepared by equivalent-volume impregnation method. Experimental facility based on an adiabatic tubular reactor with preheating section was designed and set up, the behaviors of diesel reforming to hydrogen with straight-run diesel as a raw material according to the analysis of the components were studied. Diesel oil reforming over a catalyst for hydrogen production was analyzed using an adiabatic tubular reactor with a preheating section that was designed and built in-house. The operating conditions were optimized. Under the suitable operating conditions, viz., catalyst bed inlet temperature of 700°C, diesel liquid space velocity of 0.24 h–1, water-carbon ratio of 20, and oxygen-carbon ratio of 0.6, the hydrogen yield reached 28.3 (mol/mol).
Słowa kluczowe
EN
Rocznik
Strony
12--19
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wz.
Twórcy
autor
  • School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
autor
  • College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
autor
  • School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
autor
  • Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, China
Bibliografia
  • 1. Al-Musa, A., Al-Saleh, M., Ioakeimidis, Z., Ouzounidou, M., Yentekakis, I., Konsolakis, M. & Marnellos, G. (2014). Hydrogen production by isooctane steam reforming over Cu catalysts supported on rare earth oxides (REOs). Inter. J. Hydrog. Energ., 39, 1350–1363. DOI: 10.1016/j.ijhydene.2013.11.013.
  • 2. Kothari, R., Buddhi, D. & Sawhney, R.L. (2008). Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sust. Energ. Rev., 12, 553–563. DOI: 10.1016/j.rser.2006.07.012.
  • 3. Fernández, A., Arzac, G., Vogt, U., Hosoglu, F., Borgschulte, A., de Haro, M.J., Montes, O. & Züttel, A. (2016). Investigation of a Pt containing washcoat on SiC foam for hydrogen combustion applications. Appl. Catal. B: Environ., 180, 336–343. DOI: 10.1016/j.apcatb.2015.06.040.
  • 4. Tollefson, J. & Monastersky, R. (2012). The global energy challenge: A wash with carbon. Nature, 491, 654–655. DOI: 10.1038/491654a.
  • 5. Li, C., Zhao, X., Wang, A., Huber, G.W. & Zhang, T. (2015). Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev., 115, 11559–11624. DOI: 10.1021/acs.chemrev.5b00155.
  • 6. Rodrigues, C.P. & Schmal, M. (2011). Nickel-alumina wash coating on monoliths for the partial oxidation of ethanol to hydrogen production. Inter. J. Hydrog. Energy, 36, 10709–10718. DOI: 10.1016/j.ijhydene.2011.05.175.
  • 7. Ciambelli, P., Palma, V. & Palo, E. (2010). Comparison of ceramic honeycomb monolith and foam as Ni catalyst carrier for methane autothermal reforming. Catalysis Today, 155, 92–100. DOI: 10.1016/j.cattod.2009.01.021.
  • 8. Liu, W.J., Jiang, H. & Yu, H.Q. (2015). Thermochemical conversion of lignin to functional materials: A review and future directions. Green. Chem., 17, 4888–4907. DOI: 10.1039/c5gc01054c.
  • 9. Recari, J., Berrueco, C., Abelló, S., Montané, D. & Farriol, X. (2014). Effect of temperature and pressure on characteristics and reactivity of biomass-derived chars. Bioresour. Technol., 170, 204–210. DOI: 10.1016/j.biortech.2014.07.080.
  • 10. Faure, R., Rossignol, F., Chartier, T., Bonhomme, C., Maître, A., Etchegoyen, G., Del Gallo, P. & Gary, D. (2011). Alumina foam catalyst supports for industrial steam reforming processes. J. Eur. Ceramic Soc., 31, 303–312. DOI: 10.1016/j.jeurceramsoc.2010.10.009.
  • 11. Carpenter, D., Westover, T.L., Czernik, S. & Jablonski, W. (2014). Biomass feedstocks for renewablefuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem., 16, 384–406. DOI: 10.1039/c3gc41631c.
  • 12. Walmsley, T.G., Walmsley, M.R.W., Varbanov, P.S. & Klemes, J.J. (2018). Energy ratio analysis and accounting for renewable and non-renewable electricity generation: A re-view, Renew. Sust. Energ. Rev., 98, 328–345. DOI: 10.1016/j.rser.2018.09.034.
  • 13. Turner, J., Sverdrup, G., Mann, M.K., Maness, P.C., Kroposki. B., Ghirardi, M., Evans, R.J. & Blake, D. (2008). Renewable hydrogen production. Int. J. Energy Res., 32, 379–407. DOI: 10.1002/er.1372.
  • 14. Dincer, I. & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy, 40, 11094–11111. DOI: 10.1016/j.ijhydene.2014.12.035.
  • 15. Carmo, M., Fritz, D.L., Mergel, J. & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy, 38, 4901–4934. DOI: 10.1016/j.ijhyde-ne.2013.01.151.
  • 16. Nam, J.Y. & Logan, B.E. (2011). Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell. Int. J. Hydrog. Energy, 36, 15105–15110. DOI: 10.1016/j.ijhydene.2011.08.106.
  • 17. Barczuk, P.J., Lewera, A., Miecznikowski, K., Kulesza, P. & Augustyński, J. (2009). Visible light-driven photoelectro-chemical conversion of the by-products of the ethanol fuel cell into hydrogen. J. Electroanal. Chem., 12, B165–B166. DOI: 10.1149/1.3236383.
  • 18. Pinna, F. (1998). Supported metal catalysts preparation. Catalysis Today, 41, 129–137. DOI: 10.1016/S0920-5861(98)00043-1.
  • 19. Martinez-Frias, J. & Pham, A.Q. & Aceves, S.M. (2003). A natural gas-assisted steam electrolyzer for high-efficiency production of hydrogen. Int. J. Hydrog. Energy, 28, 483–490. DOI: 10.1016/S0360-3199(02)00135-0.
  • 20. Ambroise, E., Courson, C., Roger, A.C., Kiennemann, A., Blanchard, G., Rousseau, S., Carrier, X., Marceau, E., La Fontaine, C. & Villain, F. (2010). Exhaust gas recirculation for onboard hydrogen production by isooctane reforming: Comparison of performances of metal/ceria-zirconia based catalysts prepared through pseudo sol-gel or impregnation methods. Catalysis Today, 154, 133–141. DOI: 10.1016/j.cattod.2009.12.010.
  • 21. Santos, D., Lisboa, J., Passos, F. & Noronha, F. (2004). Characterization of steam-reforming catalysts. Brazilian J. Chem. Eng., 21, 203–209. DOI: 10.1590/S0104-66322004000200009.
  • 22. Pinho, A. de R., de Almeida, M.B., Mendes, F.L., Casavechia, L.C., Talmadge, M.S., Kinchin, C.M. & Chum, H.L. (2017). Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Fuel, 188, 462–473. DOI: 10.1016/j.fuel.2016.10.032.
  • 23. Mante, O.D., Dayton, D.C., Gabrielsen, J., Ammitzboll, N.L., Barbee, D., Verdier, S. & Wand, K. (2016). Integration of catalytic fast pyrolysis and hydroprocessing: a pathway to refinery intermetiates and “drop-in” fuels from biomass. Green Chem., 18, 6123–6135. DOI: 10.1039/C6GC01938B.
  • 24. Wei, L., Yong, C., Xu, D., Zhe, Z., Chao, Z.S. & Deng, Y.L. (2016). High efficiency hydrogen evolution from native biomass electrolysis. Energy Environ. Sci., 9, 467–472. DOI: 10.1039/c5ee03019f.
  • 25. Lv, H., Geletii, Y.V., Zhao, C.C., Vickers, J.W., Zhu, G.B., Luo, Z., Song, J., Lian, T.Q., Musaev, D.G. & Hill, D.L. (2012). Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev., 41, 7572–7589.DOI: 10.1039/c2cs35292c.
  • 26. Symes, M.D. & Cronin, L. (2013). Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem., 5, 403–409. DOI: 10.1038/nchem.1621.
  • 27. Bellussi, G., Rispoli, G., Landoni, A., Millini, R., Molinari, D., Montanari, E., Moscotti, D. & Pollesel, P. (2013). Hydro-conversion of heavy residues in slurry reactors, Developmentsand perspectives, J. Catalysis, 308, 189–200. DOI: 10.1016/j.jcat.2013.07.002.
  • 29. Lin, L., Wu, L.Q., Sui, L.R. & He, S.H. (2018). Autothermal Reforming of Diesel to Hydrogen and Activity Evaluation. Energy Fuels, 32, 7971–7977. DOI: 10.1021/acs.energyfuels.8b01431.
  • 30. Rana, M.S., Sámano, V., Ancheyta, J. & Diaz, J. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 86, 1216–1231. DOI: 10.1016/j.fuel.2006.08.004. DOI: 10.1016/j.fuel.2006.08.004.
  • 31. Zhang, S., Liu, D., Deng, W. & Que, G. (2007). A Review of Slurry-Phase Hydrocracking Heavy Oil Technology. Energy Fuels, 21, 3057–3062. DOI: 10.1021/ef700253f.
  • 32. Yang, H., Kudo, S., Hazeyama, S., Norinaga, K., Masek, O. & Hayashi, J. (2013). Detailed analysis of residual volatiles in chars from the pyrolysis of biomass and lignite. Energy Fuels, 27, 3209–3223. DOI: 10.1021/ef4001192.
  • 33. Kaila, R.K. & Krause, A.O.I. (2006). Autothermal reforming of simulated gasoline and diesel fuels. Internat. J. Hydrog. Energy, 31, 1934–1941. DOI: 10.1016/j.ijhydene.2006.04.004.
  • 34. Ahmed, S.M. & Krumpelt. (2001). Hydrogen from hydrocarbon fuels for fuel cells. Inte. J. Hydrog. Energy, 26, 291–301. DOI: 10.1016/S0360-3199(00)00097-5.
  • 35. Chen, Y.H., Xu, H.Y., X.L. Jin & Xiong, G.X. (2006). Integration of gasoline prereforming into autothermal reforming for hydrogen production. Catlysis Today, 116, 334–340. DOI: 10.1016/j.cattod.2006.05.065.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
W bibliografii brak poz. 28
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d95bd2e-cd4d-4355-8230-6802ce822ec1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.