PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strain‑induced grain evolution of pure nickel under warm power torsional rolling process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since the existing severe plastic deformation (SPD) technology cannot be used to prepare bulk ultrafine-grained material (BUGM) with industry size, a novel method entitled power torsional rolling (PTR), is proposed. The material flow, strain components, strain rate, and temperature were explored by finite element simulation, and the strain-induced grain evolution of pure nickel processed by warm PTR was systematically discussed. The simulation results reveal that the combination of radial compression deformation, longitudinal shear deformation and circumferential shear deformation is beneficial to refine grain size, and the continue local loading characteristic requires less forming load, which confirms that the PTR process has the potential to prepare BUGM with industry size. The experiment results indicate that the grain refinement caused by dynamic recrystallization is remarkable within the temperature range of 450-800 ℃, and the average grain size of pure nickel is refined from 110 μm to 10 μm after two passes PTR. The microstructure distribution of obtained bar is uniform and the isotropic microstructure is observed due to the three-dimensional compression-shear deformation. The tensile test results indicate that the yield strength and ultimate tensile strength increase simultaneously due to the grain-boundary strengthening and twin boundary strengthening.
Rocznik
Strony
art. no. e73, 2024
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, Xi’an University of Technology, Xi’an 710048, Shaanxi, China
autor
  • Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, Xi’an University of Technology, Xi’an 710048, Shaanxi, China
autor
  • School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
autor
  • Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, Xi’an University of Technology, Xi’an 710048, Shaanxi, China
autor
  • Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, Xi’an University of Technology, Xi’an 710048, Shaanxi, China
Bibliografia
  • 1. De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283-362.
  • 2. Coury FG, Kaufman M, Clarke AJ. Solid-solution strengthening in refractory high entropy alloys. Acta Mater. 2019;175:66-81.
  • 3. Zhang W, Ma Z, Zhao H, Ren L. Refinement strengthening, second phase strengthening and spinodal microstructure-induced strength-ductility trade-off in a high-entropy alloy. Mater Sci Eng, A. 2022;847: 143343.
  • 4. Huo P, Zhao Z, Du W, Zhang Z, Bai P, Tie D. Deformation strengthening mechanism of in situ TiC/TC4 alloy nanocomposites produced by selective laser melting. Compos B Eng. 2021;225: 109305.
  • 5. Gao T, Liu L, Zhao K, Liu S, Han M, Liu G, et al. Design and fabrication of a (6.4γ–Al2O3 +18Al13Fe4)/Al (wt.%) composite utilizing fine grain strengthening and dispersion strengthening at elevated temperatures. Mater Des. 2022;215: 110432.
  • 6. Wang X, Shi X, Hui Y, Chen B, Gan B, Shen J. Mechanical behavior and strengthening mechanism of a fine-grained medium carbon steel produced via cyclic oil quenching. Mater Sci Eng, A. 2023;866: 144669.
  • 7. Ke R, Hu C, Zhong M, Wan X, Wu K. Grain refinement strengthening mechanism of an austenitic stainless steel: critically analyze the impacts of grain interior and grain boundary. J Market Res. 2022;17:2999-3012.
  • 8. Wang X, Ma Y, Meng B, Wan M. Effect of equal-channel angular pressing on microstructural evolution, mechanical property and biodegradability of an ultrafine-grained zinc alloy. Mater Sci Eng, A. 2021;824: 141857.
  • 9. Ovid’Ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462-540.
  • 10. Zhang Z, Zhang J, Wang J, Li Z, Xie J, Liu S, et al. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int J Miner Metall Mater. 2021;28:30-45.
  • 11. Wang Y, Yang T, Lu Q, Li K, Wang Z, Du Y. Grain size refinement and enhanced precipitation strengthening in a hot extruded 6xxx Al alloy without homogenization. Mater Charact. 2023;198: 112718.
  • 12. Embury JD, Fisher RM. The structure and properties of drawn pearlite. Acta Metall. 1966;14:147-59.
  • 13. Yu Z, Tang A, Wang Q, Gao Z, He J, She J, et al. High strength and superior ductility of an ultra-fine grained magnesium-manganese alloy. Mater Sci Eng, A. 2015;648:202-7.
  • 14. Wang Y, Chen M, Zhou F, Ma E. High tensile ductility in a nanostructured metal. Nature. 2002;419:912.
  • 15. Straumal BB, Kulagin R, Klinger L, Rabkin E, Straumal PB, Kogtenkova OA, et al. Structure refinement and fragmentation of precipitates under severe plastic deformation: A review. Materials. 2022;15:601.
  • 16. Tayyebi M, Alizadeh M. Thermal and wear properties of Al/Cu functionally graded metal matrix composite produced by severe plastic deformation method. J Manuf Process. 2023;85:515-26.
  • 17. Zeisl S, Lassnig A, Hohenwarter A, Mendez-Martin F. Precipitation behavior of a Co-free Fe-Ni-Cr-Mo-Ti-Al maraging steel after severe plastic deformation. Mater Sci Eng, A. 2022;833: 142416.
  • 18. Korznikova EA, Mironov SYu, Korznikov AV, Zhilyaev AP, Langdon TG. Microstructural evolution and electro-resistivity in HPT nickel. Mater Sci Eng A. 2012;556:437-45.
  • 19. Yusuf SM, Chen Y, Yang S, Gao N. Microstructural evolution and strengthening of selective laser melted 316L stainless steel processed by high-pressure torsion. Mater Charact. 2020;159: 110012.
  • 20. Yilmazer H, Niinomi M, Nakai M, Cho K, Hieda J, Todaka Y, et al. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Mater Sci Eng C Mater Biol Appl. 2013;33:2499-507.
  • 21. Segal VM. Deformation mode and plastic flow in ultra fine grained metals. Mater Sci Eng, A. 2005;406:205-16.
  • 22. Phan TQ, Lee I-F, Levine LE, Tischler JZ, Huang Y, Fox AG, et al. X-ray microbeam measurements of long-range internal stresses in commercial-purity aluminum processed by multiple passes of equal-channel angular pressing. Scr Mater. 2014;93:48-51.
  • 23. Wang H, Ban C, Zhao N, Kang Y, Qin T, Liu S, et al. Enhanced strength and ductility of nano-grained titanium processed by two-step severe plastic deformation. Mater Lett. 2020;266:127485.
  • 24. Bohme M, Wagner MF-X. On the correlation of shear band formation and texture evolution in α-brass during accumulative roll bonding. Scr Mater. 2018;154:172-5.
  • 25. Fattah-Alhosseini A, Imantalab O. Effect of accumulative roll bonding process on the electrochemical behavior of pure copper. J Alloys Compd. 2015;632:48-52.
  • 26. Bezi Z, Krallics G, El-Tahawy M, Pekker P, Gubicza J. Processing of ultrafine-grained titanium with high strength and good ductility by a combination of multiple forging and rolling. Mater Sci Eng, A. 2017;688:210-7.
  • 27. Yuan-Zhi WU, Yan HG, Zhu SQ, Chen JH, Liu XL, Liu AM. Homogeneity of microstructure and mechanical properties of ZK60 magnesium alloys fabricated by high strain rate triaxial-forging. Chin J Nonferrous Metals. 2014;24:310-6.
  • 28. Morris DG, Munoz-Morris MA. High creep strength, dispersion-strengthened iron aluminide prepared by multidirectional high-strain forging. Acta Mater. 2010;58:6080-9.
  • 29. Zhang Z, Liu D, Man T, Li N, Yang Y, Pang Y, et al. Numerical and experimental investigations on Mannesmann effect of nickel-based superalloy. Archives of Civil and Mechanical Engineering. 2022;22:133.
  • 30. Yamane K, Shimoda K, Kuroda K, Kajikawa S, Kuboki T. A new ductile fracture criterion for skew rolling and its application to evaluate the effect of number of rolls. J Mater Process Technol. 2020;291: 116989.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d93808e-eb4c-462d-b7d9-aa68907f8dbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.