PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of stiffness degradation curves from in situ tests in various soil types

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena degradacji sztywności z badań polowych dla różnych typów gruntów
Języki publikacji
EN
Abstrakty
EN
Increasingly complex design systems require an individual approach when determining the necessary design parameters. As soils are characterized by strong strain-dependent nonlinearity, test methods used to characterize the subsoil should be carefully selected, in terms of their "sensitivity" as well as suitability for the analyzed type of problem. When direct measurements are not available, while design calculation models require specific parameters, indirect parameter estimation may be used. This approach requires calibration and validation of empirical correlations, based on well documented database of tests and case studies. One of the parameters often used, when analyzing soil-structure interaction problems, is the shear stiffness of the soil and its strain-dependent degradation. The aim of the article is to present the procedure for description and evaluation of soil stiffness based on field tests (CPTU, DMT and SDMT) and a large number of reference curves obtained from laboratory tests (TRX) for selected soil types. On the basis of the given algorithm, it is possible to obtain a stiffness module G0 value at any level of deformation, based on in-situ tests.
PL
Coraz bardziej skomplikowane układy konstrukcyjne wymagają indywidualnego podejścia przy wyznaczaniu parametrów, za każdym razem uwzględniając i modelując już na etapie badań, późniejsze warunki współpracy z podłożem. Jak wykazały dane z literatury tematu oraz wyniki uzyskane z badań własnych, grunty charakteryzują się silną nieliniowością modułu w zależności od odkształcenia, zatem należy precyzyjnie dobierać metody badania podłoża, tzn. w zakresie ich „czułości” pomiarowej, odpowiedniej dla danego typu konstrukcji budowlanych. Gdy nie są dostępne bezpośrednie pomiary, a metoda obliczeń projektowych wymaga określonych parametrów, wtedy rozwiązaniem pomocnym staje się poszukiwanie zależności korelacyjnych z poligonów badawczych i stosowanie procedur pozwalających na oszacowanie wymaganych parametrów (przy najmniej na etapie początkowych analiz). W artykule przedstawiono schemat postępowania w zakresie opisu i oceny sztywności podłoża na podstawie badań polowych (CPTU, DMT i SDMT) i opracowanych krzywych referencyjnych z badań laboratoryjnych (TRX) dla wybranych typów gruntów (iły i gliny). W oparciu o podany algorytm możliwe jest wyznaczenie wartości modułu G0 dla dowolnej wielkości strefy odkształcenia, stosując uzyskane z badań własnych zależności lokalne, w tym modele degradacji podłoża.
Rocznik
Strony
285--307
Opis fizyczny
Bibliogr. 62 poz., il., tab.
Twórcy
autor
  • Building Research Institute, Building Structures, Geotechnics and Concrete Department, Warsaw, Poland
Bibliografia
  • 1. S. Amoroso, P. Monaco, D. Marchetti, “Use of the Seismic Dilatometer (SDMT) to estimate in situ G-y decay curves in various soil types”, Proc. of the ISC’4, Porto de Galinhas, Brasil. CRS Press Taylor&Francis Group, Vol. 1, pp. 489-497, 2012.
  • 2. S. Amoroso, P. Monaco, B. M. Lehane, D. Marchetti, “Examination of the Potential of the Seismic Dilatometer to Estimate In Situ Stiffness Decay Curves in Various Soil Types”. Soils and Rocks, 37(3), 177-194, 2014.
  • 3. J. H. Atkinson, “Non-linear soil stiffness in routine design”. Géotechnique 50 (5): 487-508, 2000.
  • 4. M. Aoki, M. Kakurai, O. Ishii, K. Ishihara, “Field measurements and predictive estimates of ground heave and settlement of bearing stratum supporting the spread fundation of a skyscraper”, AJJ.J. Technology Des., No.5, 80-84, 1997.
  • 5. L. Bałachowski, P. Kozak, N. Kurek, „Intercorrelation between CPTU-DMT test for sands on the Baltic coast”, Proc. of 11th Baltic Sea Geotechnical Conference, Gdańsk. Geotechnics in Marintime Engineering. Z. Młynarek, Z. Sikora & E. Dembicki (ed.). Vol. 1. Printing-Office MISIURO, Gdańsk: 359-366, 2008.
  • 6. M. Barański, T. Godlewski, T. Szczepański, „Determination of soil stiffness parameters on chosen test sites, using in situ seismic methods”, Proc. 4th Int. workshop: Soil parameters from in situ and laboratory tests. Poznań, s. 149-157, 2010.
  • 7. W. Bogusz, M. Witowski, ”Variability of overconsolidated soils from Poland in geotechnical practice”, Proc. XVI Danube European Conf. on Geotech. Eng., Skopje, Macedonia, 585-590, 2018.
  • 8. J. F. Camacho-Tauta, J. D. J. Alvarez, O. J. Reyes-Ortiz, “A procedure to calibrate and perform the bender element test”, Dyna, 79: 10-18, 2012.
  • 9. C. R. I. Clayton, “Stiffness at small strain: research and practice”, Geotechnique 61, (1), 2011.
  • 10. B. M. Darendeli, “Development of a new family of normalized modulus reduction and material damping curves. PhD dissertation, University of Texas at Austin, TX, USA, 2001.
  • 11. M. Dysli, W. Steiner, “Correlations in soil mechanics”. PPUR Presses Polytechniques, 92, 2011.
  • 12. R. Dyvik, C. Madhus, “Lab measurements of Gmax using bender elements”, Advance in the art of testing soils under cyclic conditions (ed. V. Koshla), New York, ASCE, 186 - 196, 1985.
  • 13. M. Fahey, J. P. Carter, “A finite element study of the pressuremeter test in sand using a nonlinear elastic plastic model. Can. Geotech. J. 30, No. 2, 348-362, 1993.
  • 14. S. Foti, C. G. Lai, G. J. Rix, C. Strobbia, “Surface Wave Methods for Near-Surface Site Characterization”. CRC Press Taylor & Francis Group, 46 - 48, 6000 Broken Sound Parkway NW, 2015.
  • 15. T. Godlewski, “Practical use of the dilatometer tests - some case studies from Poland”, Proc. of The 3rd Int. Conf. on the Flat Dilatometer DMT’15, Rome. Marchetti, Monaco & Viana da Fonseca (edit.): 99-106, 2015.
  • 16. T. Godlewski, G. Kacprzak, M. Witowski, „Practical evaluation of geotechnical parameters of soils for the design of diaphragm walls embedded in Warsaw’s Pliocene clays”, Civil and Environmental Engineering, Vol. 4, No.1, 13-19, 2013. In polish.
  • 17. T. Godlewski, M. Wszędyrówny-Nast, „Correlations of regional geotechnical parameters on the basis of CPTU and DMT tests”. Proc. of 13th Baltic Sea Geotechnical Conference, Vilnius Gediminas Technical University Press, pp. 22-27, 2016.
  • 18. T. Godlewski, T. Szczepański, “Measurement of soil shear wave velocity using in situ and laboratory seismic methods – some methodological aspects”, Geological Quarterly, Vol. 59, No 2, pp. 358-366, 2015.
  • 19. T. Godlewski, T. Szczepański, “Methods for determining soil stiffness in geotechnical investigations, guidance, Poradnik ITB, Warszawa, 2015. In polish.
  • 20. B. O. Hardin, V. P. Drnevich, “Shear modulus and damping in soils: design equations and curves”, J. Geotech. Eng. 98, No. 7, 667-692, 1972.
  • 21. B.O. Hardin, “The nature of stress-strain behaviour of soils, State-of-the-art report”, Proc. Spec. Conf. on Earthquake Engineering and Soil Dynamics, pp. 3-90, 1978.
  • 22. R. D. Hryciw, “Small Strain Shear Modulus of Soil by Dilatometer”, JGED, ASCE, Vol. 116, No. 11, pp. 1700-1715, 1990.
  • 23. K. Ivandic, M. Spiranec, B. Kavur, S. Strelec, “Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests”, World Academy of Science, Eng. and Techn. Inter. Journal of Geotech. and Geolog. Eng. 12(2): 144-151, 2018.
  • 24. M. Jamiolkowski, D. C. F. Lo Presti, O. Pallara, “Role of In-Situ Testing in Geotechnical Earthquake Engineering”, Proc. of 3rd Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamic, State of the Art 7, St. Louis, Missouri, Vol. II, pp. 1523-1546, 1995.
  • 25. R. J. Jardine, D. M. Potts, A. Fourie, J. B. Burland, “Studies of the Influence of Non-Linear Stress-Strain Characteristics in Soil-Structure Interaction”, Geotechnique, Vol. 36, No.3, 377-396, 1986.
  • 26. Z. Lechowicz, M. Bajda, S. Rabarijoely, G. Wrzesinski, “Use of SDMT for the evaluation of the geotechnical parameters of organic soils.” Proc. 5th Int. Workshop on CPTU and DMT in soft clays and organic soils. Poznan, Poland, 107-118, 2014.
  • 27. Z. Lechowicz, S. Rabarijoely, T. Kutia, “Determination of undrained shear strength and constrained modulus from DMT for stiff overconsolidated clays”, Annals of Warsaw University of Life Sciences – SGGW, Land Reclam., 49 (2), pp. 107-116, 2017.
  • 28. J. S. Lee, J. C. Santamarina, “Bender elements: performance and signal interpretation”, Journal of Geotechnical and Geoenvironmental Engineering, 131: 1063-1070, 2005.
  • 29. M. L. Lipiński, „Criteria of estimation of geotechnical parameters”, Polimax s.c., Warszawa, 2013. In polish.
  • 30. M. L. Lipiński, W. Tymiński, „Evaluation of initial stiffness of natural overconsolidated soils, Proc. of 15th Eur. Conf. on Soil Mech. Geot. Eng. IOS Press, 209-214, 2011.
  • 31. K. R. Massarsch, “Deformation properties of fine-grained soils from seismic tests”. Proc. Int. Conf. on Site Characterization, ISC’2, Porto, Portugal, pp. 133-146, 2004.
  • 32. S. Marchetti, “In Situ Tests by Flat Dilatometer”. Journal of the Geotechn. Engineering Division, ASCE, Vol. 106, No. GT3, 299-321, 1980.
  • 33. S. Marchetti, P. Monaco, G. Totani, D. Marchetti, “In Situ tests by seismic dilatometer (SDMT)”, Laier, J.E.; Crapps D.K. & Hussein M.H. (eds) From Research to Practice in Geotechnical Engineering. Geotechnical Special Publication, ASCE, v. 180, p. 292-311, 2008.
  • 34. D. Marchetti, S. Marchetti, P. Monaco, “Interrellationship between small strain modulus Go and operative modulus”, Prepared for IS-Tokyo – Earthquake Geotechnical Engineering Conference, from Case History to Practice IS-Tokyo 2009, T. Kokusho, Y. Tsukamoto and M. Yoshimine (eds), Taylor & Francis Group, London, Tsukuba, Japan Volume: 1315-1323, 2009.
  • 35. M. C. Matthews, C. R. I Clayton, Y. Own, “The use of geophysical techniques to determine geotechnical stiffness parameters”, Proc. Instn. Civ. Eng. Geotech. Eng, 143, 31-42, 2000.
  • 36. P. W. Mayne, “Stress-strain-strength-flow parameters from enhanced In-situ tests”, Proc. of Int. Conf. on In Situ Measurement of Soil Properties & Case Histories (In Situ 2001), Bali: 27-48, 2001.
  • 37. P.W. Mayne, G. J. Rix, “Gmax -qc Relationships for Clays”, Geotechnical Testing Journal, Vol. 16, No. 1, pp. 54-60, 1993.
  • 38. M. Mitew-Czajewska, A. Siemińska-Lewandowska, “The effect of deep excavation on surrounding ground and nearby structures”, Proceedings of the 6th International Symposium (IS-Shanghai 2008), Shanghai, China, Geotechnical Aspects of Underground Construction in Soft Ground / Ng C.W.W., Huang H.W., Liu G.B. (eds), CRC Press/Balkema: 201-206. 2009.
  • 39. M. Mitew-Czajewska, “Parametric study of deep excavation in clays”. Bulletin of the Polish Academy of Sciences, Technical Sciences 66 (5): 747-754, 2018.
  • 40. Z. Młynarek, S. Gogolik, G. Sanglerat, ”Interrelationship between deformation moduli from CPTU and SDMT tests for overconsolidated soils”. Proc. of the 18th Int. Conf. on Soil Mechanics and Geotech. Eng., Paris: 583-586, 2013.
  • 41. Z. Młynarek, J. Wierzbicki, A. Smaga, „Initial shear modulus of soils of different origin from SCPTU & SDMT, 6th Int. Workshop In situ & Lab. Char. of OC subsoil, Poznań, Poland, 57-68, 2017.
  • 42. Z. Młynarek, K. Stefaniak, J. Wierzbicki, „Evaluation of deformation parameters of organic subsoil by means of CPTU, DMT, SDMT”, Architecture Civil Engineering Environment, Vol. 6, No 4, 51-58, 2013.
  • 43. P. Monaco, G. Totani, M. Calabrese, “DMT – predicted vs observed settlements: a review of the available experience”, Proc. from the Second Int. Flat Dilatometer Conference, Washington D.C.: 275-280, 2006.
  • 44. P. Monaco, S. Amoroso, S. Marchetti, D. Marchetti, G. Totani; S. Cola, P. Simonini, “Overconsolidation and Stiffness of Venice Lagoon Sands and Silts from SDMT and CPTU. J. Geotech. Geoenviron. Eng., ASCE, v. 140:1, p. 215-227, 2014.
  • 45. P. Popielski, “The influence of deep foundations on urban environment”, Publishing House of the Warsaw University of Technology, Environmental Engineering, Z. 61, 2012.
  • 46. S. Rabarijoely, “The use of dilatometer test to determine the undrained shear strength of organic soils”, Annals of Warsaw University of Life Sciences – SGGW, Land Reclam., 40, pp. 97-105. 2008.
  • 47. S. Rabarijoely, K. Garbulewski, “Simultaneous interpretation of CPT/DMT tests to ground characterization”, Proc. of the 18th Int. Conf. on Soil Mechanics and Geotech. Eng., Paris, Vol. 1, pp. 1337-1340, 2013.
  • 48. Research Project (Grant Number 4 T07E 047 30) conducted by Building Research Institute in Warsaw, 2008.
  • 49. P. K. Robertson, “Interpretation of cone penetration tests – unified approach”, Can. Geotech. J. 46, 1337-1355, 2009.
  • 50. P. K. Robertson, “Cone penetration test (CPT)-based soil behavior type (SBT) classification system – an update”, Canadian Geotechnical Journal, 53: 1910-1927, 2016.
  • 51. G. Sanglerat, “The penetrometr and soil exploration”, Elsevier, Amsterdam, 1972.
  • 52. S. Shibuya, H. Tanaka, “Estimate of Elastic Shear Modulus in Holocene Soil Deposits”, Soils and Foundations, Vol. 36, No. 4, 45-55, 1996.
  • 53. Z. Sikora, „Static penetration – methodology and aplication in geoengineering”, wyd. nauk-tech. Warszawa, 2006. In polish.
  • 54. Standard: Eurocode 7 PN-EN 1997-2:2008: Geotechnical Design – Part 2: Ground investigation and testing.
  • 55. M. Superczyńska, K. Józefiak, A. Zbiciak, “Numerical analysis of diaphragm wall model executed in Poznań clay formation applying selected FEM codes”, Archives of Civil Engineering Vol. LXII, Issue 3: 207-224, 2016.
  • 56. S. Oztoprak, M. D. Bolton, “Stiffness of sands through a laboratory test database”, Géotechnique, Vol. 63 Issue 1, pp. 54-70, 2013.
  • 57. H. Tanaka, M. Tanaka, „Characterization of Sandy Soils using CPT and DMT”, Soils and Foundations, Japanese Geot. Soc.,Vol. 38, 3: 55-65, 1998.
  • 58. A. Truty, K. Podleś, “Numerical model of flat dilatometer test in cohesionless soils”, 4th Int. Symposium on Computational Geomechanics: ComGeo IV, Assisi, Italy, 144-145, 2018.
  • 59. P. Vardanega, M. D. Bolton, “Practical methods to estimate the non-linear shear stiffness of fine grained soils”, 5th Int. Symposium on Deformation Characteristics of Geomaterials At: Seoul, South Korea Volume: 1, 372-379, 2011.
  • 60. L. Wysokiński, T. Godlewski, M. Wszędyrówny-Nast, ” Regional corelations of geotechnical parameters on the basis of CPTU and DMT tests”, Wyd. Uczel. UTB Bydgoszcz, Proc. of Conf., pp. 235-242, 2009. In polish.
  • 61. J. Wierzbicki, “Evaluation of subsoil overconsolidation by means of in situ tests at aspect of irs origin”, Rozprawy Naukowe nr 410. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, 2010. In polish.
  • 62. M. Witowski, “Local Displacement Transducer with Miniature Position Encoder”, Geotechnical Testing Journal, (in print), 2018.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d8a830d-e67e-4753-b663-ca0f6733ebd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.