PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radioactivity characteristics of lignite and hard coals: Case study of Zonguldak (Kozlu), Konya (Karapınar) and Antalya (Pamucakyayla) in Türkiye

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH 2023 (22-24 September 2023 ; Krakow, Poland)
Języki publikacji
EN
Abstrakty
EN
In this study, the radioactivity contents of Carboniferous Zonguldak-Kozlu hard coals, Carboniferous Antalya-Pamucakyayla hard coals and Pliocene Konya-Karapınar lignites were determined, then compared with the limit values determined by the authorized institutions and their hazard indexes were determined. The range of measured activity concentrations was from 16.2 Bq∙kg-1 to 227.6 Bq∙kg-1 for 238U, 20.6 Bq∙kg-1 to 67.5 Bq∙kg-1 for 232Th and 211.9 Bq∙kg-1 to 515.5 Bq∙kg-1 for 40K. The calculated mean absorbed gamma dose rate (D), radium equivalent activity (Raeq) and annual equivalent dose (AED) were 105.7 nGy∙h-1 , 227.9 Bq∙kg-1 and 129.6 μSv∙h-1 , respectively. Although 238U and 232Th radionuclide activity concentrations are comparable to literature values, 40K activity concentrations were around three or four times higher than in UNSCEAR (2000) reports. As it poses a radiological risk, it is necessary to take the necessary precautions to reduce the negative effects on the environment and human health due to use of coals from Konya-Karapınar, Antalya-Pamucakyayla basins and to burn in a controlled manner.
Słowa kluczowe
Czasopismo
Rocznik
Strony
99--105
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Nuclear Technology and Radiation Safety Program Akdeniz University, Electric and Energy Department Antalya, Turkey
  • Akdeniz University, Technical Sciences Vocational School, Department of Architecture and City Planning Antalya, Turkey
  • Akdeniz University, Technical Sciences Vocational School, Department of Architecture and City Planning Antalya, Turkey
  • Akdeniz University, Faculty of Engineering, Department of Geological Engineering, Antalya, Turkey
Bibliografia
  • 1. Dai, S., Bechtel, A., Eble, C. F., Flores, R. M., French, D., Graham, I. T., Hood, M. M., Hower, J. C., Korasidis, V. A., Moore, T. A., Puttmann, W., Wei, Q., Zhao, L., & O’Keefem, J. M. K. (2020). Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol., 219, 103383.
  • 2. TKI-Turkish Coal Enterprises. (2021). Coal (Lignite). In Sector Report 2020. Ankara: TKI.
  • 3. Karadirek, S., & Ozcelik, O. (2019). Organic geochemical characteristics and depositional environment of the Soma-Eynez (Manisa) coals, Western Anatolia, Turkey. Energy & Fuels, 33(2), 677–690.
  • 4. Finkelman, R. B., Palmer, C. A., & Wang, P. (2018). Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol., 185, 138–160.
  • 5. Swaine, D. J. (1990). Trace elements in coal. Butterworth-Heinemann.
  • 6. Dai, S., Yang, J., Ward, C. R., Hower, J. C., Liu, H., Garrison, T. M., French, D., & O’Keefe, J. M. K. (2015). Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geology Reviews, 70, 1–30.
  • 7. Palmer, C. A., Tuncalı, E., Dennen, K. O., Coburn, T. C., & Finkelman, R. B. (2004). Characterization of Turkish coals: a nation-wide perspective. Int. J. Coal Geol., 60, 85–115. https://doi.org/10.1016/j.coal.2004.05.001.
  • 8. Erarslan, C., Örgün, Y., & Bozkurtoğlu, E. (2014). Geochemistry of trace elements in the Keşan coal and its efect on the physicochemical features of groundand surface waters in the coal felds, Edirne, Thrace Region, Turkey. Int. J. Coal Geol., 133, 1–12. https://doi. org/10.1016/j.coal.2014.09.003.
  • 9. Perinçek, D., Ataş, N., Karatut, Ş., & Erensoy, E. (2015). Geological factors that controls the potential of lignite layers in Danişmen Formation, Trakya Basin. J. Miner. Res. Explor., 150, 79–110. https://doi.org/10.19111/bmre.65462.
  • 10. Çelik, Y., Karayiğit, A. İ., Querol, X., Oskay, R. G.,Mastalerz, M., & Kayseri Özer, M. S. (2017). Coal characteristics, palynology, and palaeoenvironmental interpretation of the Yeniköy coal of Late Oligocene age in the Thrace Basin (NW Turkey). Int. J. CoalGeol., 181, 103–123. https://doi.org/10.1016/j.coal.2017.08.015.
  • 11. Erarslan, C., & Örgün, Y. (2017). Mineralogical and geochemical characterization of the Saray and Pınarhisar coals, Northwest Thrace Basin, Turkey. Int. J. Coal Geol., 173, 9–25. https://doi.org/10.1016/j.coal.2017.01.015.
  • 12. Nisnevich, M., Sirotin, G., Schlesinger, T., & Eshel, Y. (2008). Radiological safety aspects of utilizing coal ashes for production of lightweight concrete. Fuel, 87(8/9), 1610–1616. https://doi.org/10.1016/j.fuel.2007.07.031.
  • 13. Gür, F., & Yaprak, G. (2010). Natural radionuclide emission from coal-fred power plants in the southwestern of Turkey and the population exposure to external radiation in their vicinity. J. Environ.Sci. Health Pt. A, 45(14), 1900–1908. https://doi.org/10.1080/10934 529.2010.520608.
  • 14. Lu, X., Li, L. Y., Wang, F., Wang, L., & Zhang, X. (2012). Radiological hazards of coal and ash samples collected from Xi’an coal-fred power plants of China.Environ. Earth Sci., 66(7), 1925–1932. https://doi.org/10.1007/s12665-011-1417-x.
  • 15. Krylov, D. A., & Sidorova, G. P. (2013). Radioactivity of coal and ash-slag TPP wastes. Atom. Energy, 114(1), 56–60. https://doi.org/10.1007/ s10512-013-9670-6.
  • 16. Durašević, M., Kandić, A., Stefanović, P., Vukanac, I., Šešlak, B., Milošević, Z., & Marković, T. (2014). Natural radioactivity in lignite samples from open pit mines “Kolubara”, Serbia–risk assessment. Appl. Radiat. Isot., 87, 73–76. https://doi.org/10.1016/j.apradiso.2013.11.096.
  • 17. Göncüoğlu, M. C. (1997). Pre-Alpine and Alpine terranes in Turkey: explanatory notes to the terrane map of Turkey. Annales géologiques des pays helléniques, 37, 515.
  • 18. Özçelik, O., Altunsoy, M., Karadirek, S., Ünal, N., Bilgiç, A. (2020). Kozlu Formasyonu’nun (Vestafaliyen-A) Acilik, Domuzcu Ve Büyük Damarlarına Ait Taşkömürleri’nin (Zonguldak) Steran Ve Terpan Hidrokarbonlar Açısından Değerlendirilmesi. Antalya, Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi. (Project no. FBA-2018-3154).
  • 19. Altunsoy, M., Özçelik, O., Karadirek, S., & Taka, M. (2011). Karapınar (Konya) güneyindeki kömürlü Pliyosen birimlerinin organik fasiyes özellikleri. Antalya, Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi.
  • 20. Şenel, M., Serdaroğlu, M., Kengil, R., Ünverdi, M., & Gözler, M. Z. (1981). Teke Torosları Güneydoğusunun Jeolojisi. Maden MTA Dergisi, 95/96, 13–43.
  • 21. Okay, A. I., Satir, M., & Siebel, W. (2006). Pre-Alpide Palaeozoic and Mesozoic orogenic events in the Eastern Mediterranean region. Memoirs, 32(1), 389–405.
  • 22. Şengör, A. C. (1984). The Cimmeride orogenic system and the tectonics of Eurasia. Geological Society of America Special Papers, 195, 1–82.
  • 23. Şengör, A. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3/4), 181–241.
  • 24. Can, E., & Yalçın, M. N. (1992). Armutçuk Yöresinde Karbonifer İstifinin Jeolojik Evrimi ve Modellenmesi. In Türkıye 8. Kömür Kongresı Bıldırıler Kıtabı (pp. 367–380).
  • 25. Eren, Y. (2003) Konya Bölgesinin Depremselliği: TPJD, Haymana Tuzgölü–Ulukışla Basenleri. In Uygulamalı çalışma (workshop), Özel Sayı, 5 (pp. 85–98).
  • 26. Şenel, M. (1985). Alakırçay grubu, Kumluca zonunun litostratigrafiözellikleri ve yaşı: Güneybatı AntalyaTürkiye. Maden Tetkik ve Arama Dergisi, 103(103,104).
  • 27. Bozkaya, Ö., & Yalçın, H. (2009). Antalya Birliği –Alakırçay Napı Triyas yaşlı volkanik kayaçlarının alterasyon mineralojisi. Sivas, Türkiye: Cumhuriyet Üniversitesi. (Jeoloji Mühendisliği Bölümü).
  • 28. Ozmen, S. F. (2020). Ecological assesment of Akkuyu nuclear power plant site marine sediments in terms of radionuclide and metal accumulation. J. Radioanal. Nucl. Chem., 325, 133–145.
  • 29. Demšar,, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Mozina, M., Polajnar, M., Toplak, M., Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar, J., Zitnik, M., & Zupan, B. (2013). Orange: data mining toolbox in Python. Journal of Machine Learning Research, 14(1), 2349–2353.
  • 30. Varinlioğlu, A., Akyüz, T., & Köse, A. (1998). The radioactivity measurement of Turkish lignites. J. Environ. Radioact., 41(3), 381–387.
  • 31. Öztürk, N., & Özdogan, Z. S. (2004). Preliminary analyses of natural radionuclides in selected Turkish power plant lignites. J. Radioanal. Nucl. Chem., 259, 233–237.
  • 32. Varinlioğlu, A., Akyüz, T., & Köse, A. (2000). Natural and artificial radionuclides in selected lignites from Istanbul. J. Radioanal. Nucl. Chem., 246(2), 391–394.
  • 33. Papaefthymiou, H., Symeopoulos, B. D., & Soupioni, M. (2007). Neutron activation analysis and natural radioactivity measurements of lignite and ashes from Megalopolis basin, Greece. J. Radioanal. Nucl. Chem., 274, 123–130.
  • 34. Flues, M., Camargo, I. M. C., Silva, P. S. C., & Mazzilli, B. P. (2006). Radioactivity of coal and ashes from Figueira coal power plant in Brazil. J. Radioanal. Nucl. Chem., 270(3), 597–602.
  • 35. Habib, M. A., Basuki, T., Miyashita, S., Bekelesi, W., Nakashima, S., Techato, K., Khan, R., Majlis, A. B. K., & Phoungthong, K. (2019). Correction to: Assessment of natural radioactivity in coals and coal combustion residues from a coal-based thermoelectric plant in Bangladesh: implications for radiological health hazards. Environ. Monit. Assess., 191, 91.
  • 36. Siavalas, G., Linou, M., Chatziapostolou, A., Kalaitzidis, S., Papaefthymiou, H., & Christanis, K. (2009). Palaeoenvironment of seam I in the Marathousa lignite mine, Megalopolis basin (Southern Greece). Int. J. Coal Geol., 78(4), 233–248.
  • 37. Çam, N. F., Yaprak, G., & Eren, E. (2010). The natural radioactivity contents in feed coals from the lignite-fired power plants in western Anatolia, Turkey. Radiat. Prot. Dosim., 142(2/4), 300–307.
  • 38. Lu, X., Li, L. Y., Wang, F., Wang, L., & Zhang, X. (2012). Radiological hazards of coal and ash samples collected from Xi’an coal-fired power plants of China. Environ. Earth Sci., 66(7), 1925–1932. https://doi.org/10.1007/s12665-011-1417-x.
  • 39. Cosma, I., Petrescu, C., & Meilescub, A. (2009). Timara: Studies on the radioactivity of lignite from the area between the Danube and Motru (South-West Romania) and the incidence on the environment. J. Environ. Prot. Ecol., 10(1), 192.
  • 40. Hökerek, S. (2015). Biomarker geochemistry, majortrace elements characteristcs and organic facies variation of Yaylaköy, Kalemköy and Eynez (Soma) Neogene coals, PhD Thesis, Akdeniz University.
  • 41. Altunsoy, M., Sarı, A., Özçelik, O., Engin, H., & Hokerek, S. (2016). Major and trace-element enrichments in the Karapınar Coals (Konya, Turkey). Energy Sources Pt. A-Recovery Utilization and Environmental Effects, 38(1), 88–99.
  • 42. Koca, D., Altunsoy, M., Sarı, A., & Güllüdağ, C. B. (2015). Geochemical characteristics of major and trace elements in organic rocks in the Pamucakyayla Area, Antalya. Selcuk University Journal of Engineering, Science and Technology, 3(4), 13–26.
  • 43. UNSCEAR. (2000). Sources and efects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly, with Scientific Annexes.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d8686fc-6eb6-4c79-8043-200bfd8de923
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.