PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Current conveyor equation-defined macromodels for wideband RF circuit design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A high percentage of analogue integrated circuit designs use voltage domain signal processing techniques. Given the fact that integrated circuit current conveyors are high bandwidth current processing devices, often with superior RF performance compared to comparable voltage domain devices, it is surprising that the number of current mode integrated circuits available, as standard of-the-shelf industrial items, is so small. This paper introduces equation-defined device and Verilog-A synthesis approaches to the macromodelling of current conveyor integrated circuits. To illustrate the proposed modelling techniques the properties of a number of modular behavioural level current conveyor macromodel cells are described and their performance compared. The material presented is intended for analogue device modellers and circuit designers who wish to simulate large signal current domain integrated circuit designs. It also demonstrates how synthesized Verilog-A modules can be derived from equation-defined device and conventional subcircuits to form functional, computationally efficient current conveyor macromodels. To illustrate the application of behavioural current conveyor macromodels the design of a six cell CCII+ instrumentation amplifier is introduced and its performance discussed.
Twórcy
autor
  • Centre for Communications Technology, London Metropolitan University, UK
autor
  • Department of Electronic Engineering, Bauman Moscow State Technical University, Kaluga branch, Russia
Bibliografia
  • [1] J. A. Connelly and Pyung Choi, “Macromodeling with SPICE”, Prentice Hall, Englewood Clifs, New Jersey 07632, 1992.
  • [2] G.R. Bole, B.M. Cohn, D.O. Pederson and J.E. Soloman, “Macromodelling of integrated circuit operational amplifiers”, IEEE Journal of Solid-State Circuits, 1974, vol. 9, pp. 352-363.
  • [3] S. Jahn and M.E. Brinson, “Interactive Compact Modeling Using Qucs Equation-Defined Devices”, Int. J. Numer. Model. 2008, vol 21, pp. 335-349.
  • [4] M.E. Brinson and S. Jahn, “Qucs: A GPL software package for circuit simulation, compact device modelling and circuit macromodelling from DC to RF and beyond”, Int. J. Numer. Model. 2009, vol 22, pp. 297-319.
  • [5] Accellera, ”Verilog-AMS Language Reference Manual. Version 2.3.1.“, 2009, Available from http://www.accelera.org, [accessed February 2016].
  • [6] M.E. Brinson, R. Crozier, V. Kuznetsov, C. Novak, B. Roucaries, F. Schreuder. G.T. Torri, ”Qucs (Quite universal circuit simulator), Available from http://qucs.sourceforge.net/index.html, [accessed February 2016].
  • [7] A. Sedra and K. C. Smith, “The Current Conveyor: A new circuit building block”, , Aug. 1968, Proc. IEEE, Vol. 576, pp. 1368-1369.
  • [8] K.C. Smith and A. Sedra, “A second generation current conveyor and its applications”, Feb. 1970, IEEE Trans. Circuit Theory, Vol. CT-17, pp. 132-134.
  • [9] A. Fabre, “Low power current mode second-order bandpass IF filter”, June 1997, IEEE Trans. Circuits Syst. II, Vol. 44, pp. 436-445.
  • [10] B. Wilson, F. J. Lidgey and C, Toumazou, “Current mode signal processing circuits”, June 1989, IEEE International Symposium on Circuits abd Systems Proceedings, pp. 2665-2668.
  • [11] L. Lemaitre, W. Grabinski and C. McAndrew, “Compact device modeling using Verilog-A and ADMS”, Electron Technology Internet Journal, Vol. 35, pp. 1-5, 2003.
  • [12] L. Lemaitre, G. J. Coram, C. McAndrew and K. Kundert, “Extensions to Verilog-A to support compact device modeling”, IEEE International Behavioral Modeling and Simulation Conference, BMAS-03, pp. 134-138. October 2003.
  • [13] V. Kuznetsov, “QEP: Qucs schematic simulation with ngspice”, 2015, https://github.com/Qucs/qucs/wiki/QEP, (also at: https://github.com/ra3xdh/qucs/tree/spice4qucs), [accessed February 2016].
  • [14] Brinson M, Crozier R, Kuznetsov V, Novak C, Roucaries B, Schreuder F,and Torri GT. ”Qucs: An introduction to the new simulation and compact device modelling features implemented in release 0.0.19/0.0.19Src2 of the popular GPL circuit simulator”. MOSAK ESSDERC/ESSCIRC Workshop, 18 September Graz, 2015. http://www.mos-ak.org/graz−2015/presentations/T−5−Brinson−MOSAK−Graz−2015.pdf, [accessed February 2016].
  • [15] C. Toumazou, F.J. Lidgy and D.G. Haigh (Editors), ”Analogue IC design: the current-mode approach”, Peter Peregrinus Ltd. on behalf of the Institution of Electrical Engineers, London, UK, 1998.
  • [16] L. Lemaitre and B. Gu, ”ADMS- a fully customizable Verilog-AMS compiler approach”, NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 3, pp. 787-790.
  • [17] V. Kuznetsov and M. E. Brinson, ”Qucs-S: Qucs with SPICE”, https://ra3xdh.github.io/, [accessed October 2017].
  • [18] P. Nenzi and H. Vogt. ”Ngspice-27 (Next generation SPICE version 27), 2017. [Online] Available: http://ngspice.sourceforge.net/.
  • [19] Sandia National Laboratories US., ”Xyce parallel electronic simulator version 6.7”,2017, [Online] Available: https://xyce.sandia.gov/.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d83bd3b-5221-48d9-ab41-f7ea2a4b0247
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.