Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The seasonal patterns of the denitrifiers (denitrifying bacteria) in the sediment of Daya Bay, southern China, were examined using quantitative PCR and high-throughput MiSeq sequencing methods in spring, summer and winter. The abundance and diversity of nirS-encoding denitrifiers were much higher than that of nirK-encoding denitrifiers, indicating that the former probably dominated the denitrification processes in sediments of Daya Bay. The average abundance and diversity of nirS-encoding denitrifiers were much higher in spring than that in summer and winter, on the other hand, the abundance of nirK-encoding denitrifiers showed the opposite pattern. The species composition of nirS-encoding denitrifiers community in spring differed significantly from that in summer and winter, whereas, no significant difference existed between summer and winter. The dominant environmental drivers for the diversity of community species were NO2-, NO3- and DO concentrations. The abundances of dominant genera of nirS-encoding denitrifiers, Accumulibacter sp. and Cuprizvidus sp., were significantly higher in summer and winter than that in spring, and were negatively correlated with NO2-, NO3-, and DO concentrations ( p < 0.05). In contrast, the abundances of Azoarcus sp. and Halomonas sp., were highest in spring, and were positively correlated with NO3- and NO2- content (p < 0.05). For nirK-encoding denitrifiers, a significant difference in community composition was observed between spring and winter. No obvious correlation was found between community composition of nirK-encoding denitrifiers and environmental parameters.
Czasopismo
Rocznik
Tom
Strony
308--320
Opis fizyczny
Bibliogr. 55 poz., mapa, rys., tab., wykr.
Twórcy
autor
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment and Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
autor
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment and Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- College of Marine Science of Shanghai Ocean University, Shanghai, China
autor
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment and Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
autor
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment and Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
autor
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment and Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
Bibliografia
- [1] Abell, G. C. J., Ross, D. J., Keane, J. P., Oakes, J. M., Eyre, B. D., Robert, S. S., Volkman, J. K., 2013. Nitrifying and denitrifying microbial communities and their relationship to nutrient fluxes and sediment geochemistry in the Derwent Estuary, Tasmania. Aquat. Microb. Ecol. 70 (1), 63-75, http://dx.doi.org/10.3354/ame01642.
- [2] Alcántara-Hernández, R. J., Centeno, C. M., Ponce-Mendoza, A., Batista, S., Merino-Ibarra, M., Campo, J., Falcón, L. I., 2014. Characterization and comparison of potential denitrifiers in microbial mats from King George Island, Maritime Antarctica. Polar Biol. 37 (3), 403-416.
- [3] Baker, H. B., Kröger, B., Brooks, P. J., Smith, R. K., Czarnecki, J. M., 2015. Investigation of denitrifying microbial communities within an agricultural drainage system fitted with low-grade weirs. Water Res. 87, 193-201, http://dx.doi.org/10.1016/j.watres.2015.09.028.
- [4] Bolger, A. M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30 (15), 2114-2120, http://dx.doi.org/10.1093/bioinformatics/btu170.
- [5] Bowen, J. L., Babbin, A. R., Kearns, P. J., Ward, B. B., 2014. Connecting the dots: linking nitrogen cycle gene expression to nitrogen fluxes in marine sediment mesocosms. Front. Microbiol. 5, 429, http://dx.doi.org/10.3389/fmicb.2014.00429.
- [6] Braker, G., Zhou, J., Wu, L., Devol, A. H., Tiedje, J. M., 2000. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl. Environ. Microb. 66 (5), 2096-2104, http://dx.doi.org/10.1128/AEM.66.5.2096-2104.2000.
- [7] Bruesewitz, D. A., Hamilton, D. P., Schipper, L. A., 2011. Denitrification potential in lake sediment increases across a gradient of catchment agriculture. Ecosystems 14 (3), 341-352, http://dx.doi.org/10.1007/s10021-011-9413-2.
- [8] Burgin, A. J., Hamilton, S. K., 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ. 5 (2), 89-96, https://www.jstor.org/stable/20440584.
- [9] Chen, X., Peltier, E., Sturm, B. S., Young, C. B., 2013. Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system. Water Res. 47 (4), 1691-1700, http://dx.doi.org/10.1016/j.watres.2012.12.033.
- [10] Chen, J., Ying, G., Liu, Y., Wei, X., Liu, S., He, L., Yang, Y., Chen, F., 2017. Nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands with different design parameters. J. Environ. Sci. Heal. 52 (8), 804-818, http://dx.doi.org/10.1080/10934529.2017.1305181.
- [11] Fahy, A., McGenity, T. J., Timmis, K. N., Ball, A. S., 2006. Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol. Ecol. 58 (2), 260-270, http://dx.doi.org/10.1111/j.1574-6941.2006.00162.x.
- [12] Fish, J. A., Chai, B., Wang, Q., Sun, Y., Brown, C. T., Tiedje, J. M., Cole, J. R., 2013. FunGene: the functional gene pipeline and repository. Front Microbiol. 4, 291, http://dx.doi.org/10.3389/fmicb.2013.00291.
- [13] Gao, J., Hou, L., Zheng, Y., Liu, M., Yin, G., Li, X., Lin, X., Yu, C., Wang, R., Jiang, X., Sun, X., 2016. nirS-Encoding denitrifier community composition, distribution, and abundance along the coastal wetlands of China. Appl. Microbiol. Biotechnol. 100 (19), 8573-8582, http://dx.doi.org/10.1007/s00253-016-7659-5.
- [14] GB/T 12763.4-2007, 2007. Specifications for oceanographic survey — Part 4: Survey of chemical parameters in sea water. Standards Press of China, Beijing, 17-22, (in Chinese).
- [15] Giles, E. M., Daniell, J. T., Baggs, M. E., 2017. Compound driven differences in N2 and N2O emission from soil; the role of substrate use efficiency and the microbial community. Soil Biol. Biochem. 106, 90-98, http://dx.doi.org/10.1016/j.soilbio.2016.11.028.
- [16] Glockner, A. B., Jüngst, A., Zumft, W. G., 1993. Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cd1-free background (NirS-) of Pseudomonas stutzeri. Arch. Microbiol. 160 (1), 18, http://dx.doi.org/10.1007/BF00258141.
- [17] Graham, D., Trippett, C., Dodds, W., O'Brien, J., Banner, E., Head, I., Smith, M., Yang, R., Knapp, C., 2010. Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams. Environ. Pollut. 158 (10), 3225-3229, http://dx.doi.org/10.1016/j.envpol.2010.07.010.
- [18] Hallin, S., Lindgren, P. E., 1999. PCR detection of genes encoding nitrite reductase in denitrifing bacteria. Appl. Environ. Microbiol. 65 (4), 1652-1657.
- [19] He, T., Zhang, X., 2016. Characterization of bacterial communities in deep-sea hydrothermal vents from three oceanic regions. Mar. Biotechnol. 18 (2), 232-241, http://dx.doi.org/10.1007/s10126-015-9683-3.
- [20] Hollister, E. B., Engledow, A. S., Hammett, A. J. M., Provin, T. L., Wilkinson, H. H., Gentry, T. J., 2010. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J. 4, 829-838, http://dx.doi.org/10.1038/ismej.2010.3.
- [21] Huang, S., Chen, C., Wu, Y., Wu, Q., Zhang, R., 2011. Characterization of depth-related bacterial communities and their relation-ships with the environmental factors in the river sediments. World J. Microbiol. Biotechnol. 27 (11), 2655-2664, http://dx.doi.org/10.1007/s11274-011-0739-x.
- [22] Ibekwe, A. M., Ma, J., Murinda, S., Reddy, G. B., 2016. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste. Sci. Total Environ. 544 (15), 68-76, http://dx.doi.org/10.1016/j.scitotenv.2015.11.139.
- [23] Jiang, T., Chen, F., Yu, Z., Lu, L., Wang, Z., 2016. Size-dependent depletion and community disturbance of phytoplankton under intensive oyster mariculture based on HPLC pigment analysis in Daya Bay, South China Sea. Environ. Pollut. 219, 804-814, http://dx.doi.org/10.1016/j.envpol.2016.07.058.
- [24] Ke, Z., Tan, Y., Huang, L., Zhao, C., Jiang, X., 2017. Spatial distributions of δ13C, δ15N and C/N ratios in suspended particulate organic matter of a bay under serious anthropogenic influences: Daya Bay, China. Mar. Pollut. Bull. 114 (1), 183-191, http://dx.doi.org/10.1016/j.marpolbul.2016.08.078.
- [25] Keeney, D. R., Nelson, D. W., 1982. Inorganic forms of nitrogen. In: Page, A. L. (Ed.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, 643-698.
- [26] Kim, H., Bae, H., Reddy, K. R., Ogram, A., 2016. Distributions, abundance and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary. Water Res. 106, 51-61, http://dx.doi.org/10.1016/j.watres.2016.09.048.
- [27] Lee, J. A., Francis, C. A., 2016. Spatiotemporal characterization of San Francisco Bay denitrifying communities: a comparison of nirK and nirS diversity and abundance. Microb. Ecol. 73 (2), 271-284, http://dx.doi.org/10.1007/s00248-016-0865-y.
- [28] Li, F., Li, M., Shi, W., 2017a. Distinct distribution patterns of proteobacterial nirK- and nirS-type denitrifiers in the Yellow River estuary, China. Can. J. Microbiol. 63 (8), 708-718, http://dx.doi.org/10.1139/cjm-2017-0053.
- [29] Li, J., Jiang, X., Jing, Z., Li, G., Chen, Z., Zhou, L., Zhao, C., Liu, J., Tan, Y., 2017b. Spatial and seasonal distributions of bacterioplankton in the Pearl River Estuary: The combined effects of riverine inputs, temperature, and phytoplankton. Mar. Pollut. Bull. 125 (1-2), 199-207, http://dx.doi.org/10.1016/j.scitotenv.2017.02.208.
- [30] Liu, X., Hu, H., Liu, Y., Xiao, K., Cheng, F., Li, J., Xiao, T., 2015. Bacterial composition and spatiotemporal variation in sediments of Jiaozhou Bay, China. J. Soil. Sediment 15 (3), 732-744, http://dx.doi.org/10.1007/s11368-014-1045-7.
- [31] Liu, W., Yao, L., Jiang, X., Guo, L., Cheng, X., Liu, G., 2018. Sediment denitrification in Yangtze lakes is mainly influenced by environmental conditions but not biological communities. Sci. Total Environ. 616-617, 978-987, http://dx.doi.org/10.1016/j.scitotenv.2017.10.221.
- [32] Long, X. E., Shen, J. P., Wang, J. T., Zhang, L. M., Di, H., He, J. Z., 2017. Contrasting response of two grassland soils to N addition and moisture levels: N2O emission and functional gene abundance. J. Soil. Sediment 17 (2), 384-392, http://dx.doi.org/10.1007/s11368-016-1559-2.
- [33] Ma, Y., Ke, Z., Huang, L., Tan, Y., 2014. Identification of human-induced perturbations in Daya Bay, China: Evidence from plankton size structure. Cont. Shelf Res. 72, 10-20, http://dx.doi.org/10.1016/j.csr.2013.10.012.
- [34] Magoc, T., Salzberg, S. L., 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27 (21), 2957-2963, http://dx.doi.org/10.1093/bioinformatics/btr507.
- [35] Ni, Z., Huang, X., Zhang, X., 2015. Picoplankton and virioplankton abundance and community structure in Pearl River Estuary and Daya Bay, South China. J. Environ. Sci.-China 32, 146-154, http://dx.doi.org/10.1016/j.jes.2014.12.019.
- [36] Parks, D. H., Tyson, G. W., Hugenholtz, P., Beiko, R. G., 2014. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 30 (21), 3123-3124, http://dx.doi.org/10.1093/bioinformatics/btu494.
- [37] Patel, V., Munot, H., Shouche, Y. S., Madamwar, D., 2014. Response of bacterial community structure to seasonal fluctuation and anthropogenic pollution on coastal water of Alang-Sosiya ship breaking yard, Bhavnagar, India. Bioresource Technol. 161, 362-370, http://dx.doi.org/10.1016/j.biortech.2014.03.033.
- [38] Reyna, L., Wunderlin, D. A., Genti-Raimondi, S., 2010. Identification and quantification of a novel nitrate-reducing community in sediments of Suquía River basin along a nitrate gradient. Environ. Pollut. 158 (5), 1608-1614, http://dx.doi.org/10.1016/j.envpol.2009.12.014.
- [39] Shrewsbury, L. H., Smith, J. L., Huggins, D. R., Carpenter-Boggs, L., Reardon, C. L., 2016. Denitrifier abundance has a greater influence on denitrification rates at larger landscape scales but is a lesser driver than environmental variables. Soil Biol. Biochem. 103, 221-231, http://dx.doi.org/10.1016/j.soilbio.2016.08.016.
- [40] Small, G. E., Finlay, J. C., Mckay, R. M. L., Rozmarynowycz, M. J., Brovold, S., Bullerjahn, G. S., Spokas, K., Sterner, R. W., 2016. Large differences in potential denitrification and sediment microbial communities across the Laurentian great lakes. Biogeochemistry 128 (3), 353-368, http://dx.doi.org/10.1007/s10533-016-0212-x.
- [41] Smith, J. M., Mosier, A. C., Francis, C. A., 2015. Spatiotemporal relationships between the abundance, distribution, and potential activities of ammonia-oxidizing and denitrifying microorganisms in intertidal sediment. Microb. Ecol. 69 (1), 13-24, http://dx.doi.org/10.1007/s00248-014-0450-1.
- [42] Song, X., Huang, L., Zhang, J., Huang, H., Li, T., Su, Q., 2009. Harmful algal blooms (HABs) in Daya Bay, China: an in situ study of primary production and environmental impacts. Mar. Pollut. Bull. 58 (9), 1310-1318, http://dx.doi.org/10.1016/j.marpol-bul.2009.04.030.
- [43] Stelzer, R. S., Scott, J. T., Bartsch, L. A., Parr, T. B., 2014. Particulate organic matter quality influences nitrate retention and denitrification in stream sediments: evidence from a carbon burial experiment. Biogeochemistry 119, 387-402, http://dx.doi.org/10.1007/s10533-014-9975-0.
- [44] Tang, Y., Zhang, X., Li, D., Wang, H., Chen, F., Fu, X., Fang, X., Sun, X., Yu, G., 2016. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biol. Biochem. 103, 284-293, http://dx.doi.org/10.1016/j.soil-bio.2016.09.001.
- [45] Testa, J. M., Brady, D. C., Cornwell, J. C., Owens, M. S., Sanford, L. P., Newell, C. R., Suttles, S. E., Newell, R. I. E., 2015. Modeling the impact of floating oyster (Crassostrea virginica) aquaculture on sediment-water nutrient and oxygen fluxes. Aquacult. Environ. Interact. 7, 205-222, http://dx.doi.org/10.3354/aei00151.
- [46] Throbäck, I. N., Enwall, K., Jarvis, Å., Hallin, S., 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 49 (3), 401-417, http://dx.doi.org/10.1016/j.femsec.2004.04.011.
- [47] Wang, Y. S., Lou, Z. P., Sun, C. C., Wu, M. L., Han, S. H., 2006. Multivariate statistical analysis of water quality and phytoplankton characteristics in Daya Bay, China, from 1999 to 2002. Oceanologia 48 (2), 193-211.
- [48] Wang, C., Zhu, G., Wang, Y., Wang, S., Yin, C., 2013. Nitrous oxide reductase gene (nosZ) and N2O reduction along the littoral gradient of a eutrophic freshwater lake. J. Environ. Sci. 25, 44-52, http://dx.doi.org/10.1016/S1001-0742(12)60005-9.
- [49] Wu, F., Huang, J., Dai, M., Liu, H., Huang, H., 2016. Using ciliates to monitor different aquatic environments in Daya Bay, South China Sea. Can. J. Zool. 94 (4), 265-273.
- [50] Wu, M., Wang, Y., Wang, Y., Yin, J., Dong, J., Jiang, Z., Sun, F., 2017a. Scenarios of nutrient alterations and responses of phytoplankton in a changing Daya Bay, South China Sea. J. Marine Syst. 165, 1-12, http://dx.doi.org/10.1016/j.jmarsys.2016.09.004.
- [51] Wu, H., Wang, X., He, X., Zhang, S., Liang, R., Shen, J., 2017b. Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland. Sci. Total Environ. 598, 697-703, http://dx.doi.org/10.1016/j.scitotenv.2017.04.150.
- [52] Yang, A., Zhang, X., Agogué, H., Dupuy, C., Gong, J., 2015a. Contrasting spatiotemporal patterns and environmental drivers of diversity and community structure of ammonia oxidizers, denitrifiers, and anammox bacteria in sediments of estuarine tidal flats. Ann. Microbiol. 65 (2), 879-890, http://ir.yic.ac.cn/handle/133337/7357.
- [53] Yang, J., Ma, L., Jiang, H., Wu, G., Dong, H., 2015b. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci. Rep. 6, 25078, http://dx.doi.org/10.1038/srep25078.
- [54] Yi, N., Gao, Y., Zhang, Z., Wang, Y., Liu, X., Zhang, L., 2015. Response of spatial patterns of denitrifying bacteria communities to water properties in the stream inlets at Dianchi Lake, China. Int. J. Genomics 9, 1-11, http://dx.doi.org/10.1155/2015/572121.
- [55] Zheng, Y., Hou, L., Liu, M., Gao, J., Yin, G., Li, X., Deng, F., Lin, X., Jiang, X., Chen, F., Zong, H., Zhou, J., 2015. Diversity, abundance, and distribution of nirS-harboring denitrifiers in intertidal sediments of the Yangtze estuary. Microb. Ecol. 70 (1), 30-40, http://dx.doi.org/10.1007/s00248-015-0567-x.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d817540-0d55-48f7-aca4-b6a20acad54f