PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conditions of dead zone forming in porous catalyst pellets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work the results of the investigations on dead zone formation conditions in catalyst pellet are discussed. A new, simple method of determining the types of kinetic equations for which such a zone can appear was developed on the basis of simple mathematical transformations. It was shown that: (i) pellet geometry has no influence on necessary conditions of the origination of dead zone (ii) only driving-force term (in the sense of Langmuir-Hinshelwood-Hougen-Watson kinetic approach) decides if a dead zone is formed. A new algorithm which allows fast and precise evaluation of critical Thiele modulus Fcrit (in a catalyst pellet for F>Fcrit the dead zone appears) was proposed and tested.
Rocznik
Strony
129--–138
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Van Pur, Brewery in Rakszawa, 37-111 Rakszawa 334
  • Faculty of Chemistry, Rzeszow university of Technology, Av. Powsta´nców Warszawy 6/129, 35-959 Rzeszów
Bibliografia
  • 1. Andreev V.V., 2013. Formation of a “dead zone” in porous structures during processes that proceeding under steady state and unsteady state conditions. Rev. J. Chem., 3, 239–269. DOI: 10.1134/S2079978013030011.
  • 2. Aris R. Mathematical theory of diffusion and reaction in permeable catalyst. Claredon Press, Oxford University Press, London, 1975.
  • 3. Azimi M., Azimi A., 2015. Investigation on reaction diffusion process inside a porous bio-catalyst using DTM. J. Bioequiv. Availab., 7, 123–126. DOI: 10.4172/jbb.1000225.
  • 4. Bar-Ziv E., Kantorovich I.I., 2001. Mutual effects of porosity and reactivity in char oxidation. Prog. Energy Combustion Sci., 27, 667–697. DOI: 10.1016/S0360-1285(01)00006-5.
  • 5. Cascaval D., Turnea M., Galaction A.-I., Blaga A.C., 2012. 6-Aminopenicillanic acid production in stationary basket bioreactor with packed bed of immobilized penicillin amidase–Penicillin G mass transfer and consumption rate under internal diffusion limitation. Biochem. Eng. J., 69, 113–122. DOI: 10.1016/j.bej.2012.09.004.
  • 6. Fedotov V.Kh., Alekseev B. V., Koltsov N.I., 1985. “Dead zone” in porous catalyst grain for reactions with slightly nonmonotonic kinetic. React. Kinet. Catal. Lett., 29(1), 71–77.
  • 7. Garcia-Ochoa F., Romero A., 1988. The dead zone in a catalyst particle for fractional-order reactions. AIChE J., 34, 1916–1918, DOI: 10.10C aic.690341120.
  • 8. Jayaraman V.K., Doraiswamy L.K., 1983. Some aspects of diffusional interference in catalytic reactions. Curr. Sci., 52(7), 280–290.
  • 9. Król G., Szukiewicz M., 2013. Warunki formowania si˛e martwej strefy i jej wielko´s´c dla ziarna katalizatora o kształcie płyty płaskiej. In˙z. Ap. Chem., 52(4), 347–348 (in Polish).
  • 10. Leja F., 1976. Rachunek ró˙zniczkowy i całkowy. PWN, Warszawa (in Polish).
  • 11. Palazzi E., Converti A., 2001. Evaluation of diffusional resistance in the process of glucose isomerization to fructose by immobilized glucose isomerase. Enzym. Microb. Technol., 28, 246–252. DOI: 10.1016/S0141-0229(00) 00323-9.
  • 12. Szukiewicz M., 2016. Efficient numerical method for solution of boundary value problems with additional conditions. Braz. J. Chem. Eng., 34 (3), 873–883.
  • 13. Temkin M.I., 1975. Diffusion effects during the reaction on the surface pores of a spherical catalyst particle. Kinet. Catal., 16, 104–112.
  • 14. Thiele E.W., 1939. Relation between catalytic activity and size of particle. Ind. Eng. Chem., 31(7), 916–920.
  • 15. Thiele E.W., 1967. The effect of grain size on catalyst performance. Am. Sci., 55, 176–184.
  • 16. York R.L., Bratlie K.M., Hile L.R., Jang L.K., 2011. Dead zones in porous catalysts: Concentration profiles and efficiency factors. Catal. Today, 160, 204–212. DOI: 10.1016/j.cattod.2010.06.022.
  • 17. Wheeler A., 1951. Reactions rates and selectivity in catalyst pores. Adv. Catal., 3, 249–327.
  • 18. Zhang X., Ostadi H., Jiang K., Chen R., 2014. Reliability of the spherical agglomerate models for catalyst layer in polymer electrolyte membrane fuel cells. Electrochim. Acta, 133, 475–483. DOI: 10.1016/j.electacta.2014.04.060.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d814c6d-4e43-4b98-ae99-98e06b49d62f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.