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1. INTRODUCTION

For any metric spaces Y and Z we denote by C(Y, Z) the class of all continuous
functions from Y into Z. If Y0 ⊂ Y and α ∈ C(Y,Z), then α|Y0 denotes the restriction
of α to the set Y0.

We will use vectorial inequalities understanding that the same inequalities hold
between their corresponding components.

Suppose that M = (M1, . . . ,Mn) ∈ AC([0, a],Rn+), a > 0, R+ = [ 0,+∞), and the
function M is nondecreasing, b = (b1, . . . , bn) ∈ Rn+ and b > M(a). Let E be the Haar
pyramid

E =
{

(t, x) ∈ R1+n : t ∈ [ 0, a ],−b+M(t) ≤ x ≤ b−M(t)
}
,

where x = (x1, . . . , xn). Suppose that b0 ∈ R+ and

E0 = [−b0, 0]× [−b, b].

For (t, x) ∈ E, we define the set D[t, x] as follows:

D[t, x] = {(τ, y) ∈ R1+n : (t+ τ, x+ y) ∈ E0 ∪ E}.
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Write
V [t, x] = {(τ, s) ∈ D[t, x] : τ ≤ 0}, (t, x) ∈ E,

and
A = [−r0, 0]× [−2b, 2b], B = [−r0, a]× [−2b, 2b], r0 = b0 + a.

Then V [t, x] ⊂ A and D[t, x] ⊂ B for (t, x) ∈ E.
Given a function z : E0 ∪ E → R and a point (t, x) ∈ E. We consider functions

z[t,x] : D[t, x]→ R and z(t,x) : V [t, x]→ R defined by

z[t,x](τ, y) = z(t+ τ, x+ y), (τ, y) ∈ D[t, x],

and
z(t,x)(τ, y) = z(t+ τ, x+ y), (τ, y) ∈ V [t, x].

Put Ω = E × C(A,R)× C(B,R) and suppose that F : Ω→ R is a given function
of the variables (t, x, v, w). Suppose that

f : Ω→ Rn, f = (f1, . . . , fn),

ϕ0 : [0, a]→ R, ϕ̃ : E → Rn, ϕ̃ = (ϕ1, . . . , ϕn),

and
κ : E0 → R

are given functions. The requirements on ϕ0 and ϕ̃ are that 0 ≤ ϕ0(t) ≤ t for t ∈ [0, a]
and (ϕ0(t), ϕ̃(t, x)) ∈ E for (t, x) ∈ E. Write

ϕ(t, x) = (ϕ0(t), ϕ̃(t, x)), (t, x) ∈ E.

We will say that F and f satisfies the condition (V ) if for each (t, x) ∈ E and for
v, v̄ ∈ C(A,R), w, w̄ ∈ C(B,R) such that

v
∣∣
V [ϕ(t,x)] = v̄

∣∣
V [ϕ(t,x)] and w

∣∣
D[t,x] = w̄

∣∣
D[t,x]

we have

F (t, x, v, w) = F (t, x, v̄, w̄) and f(t, x, v, w) = f(t, x, v̄, w̄).

Note that the condition (V ) means that the value of F and f at the point (t, x, v, w) ∈ Ω
depends on (t, x) and on the restrictions of v, w to the set V [ϕ(t, x)], D[t, x] only.

We consider the functional differential equation

∂tz(t, x) + f(t, x, zϕ(t,x), z[t,x]) · ∂xz(t, x) = F (t, x, zϕ(t,x), z[t,x]) (1.1)

with the initial condition
z(t, x) = κ(t, x) on E0, (1.2)

where ∂xz = (∂x1z, . . . , ∂xnz). We assume that F and f satisfy the condition (V ).
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Write

St = [−b+M(t), b−M(t)], t ∈ [0, a],
I[x] = {t ∈ [0, a] : −b+M(t) ≤ x ≤ b−M(t)},
Et = (E0 ∪ E) ∩ ([−b0, t]× Rn), t ∈ [0, a].

We consider Carathéodory solutions of the initial problem. A function z̃ : (E0∪E)→ R
is a solution to (1.1), (1.2) provided that

(i) derivatives ∂tz̃, ∂xz̃ exist almost everywhere on E,
(ii) z̃ satisfies equation (1.1) almost everywhere on E,
(iii) initial condition (1.2) holds.

The following problems are considered in the paper. We prove that under natural
assumptions on given functions there exists exactly one Carathéodory solution to (1.1),
(1.2) and the solution is defined on E. We will show that there is a Fréchet derivative
to the solution of (1.1), (1.2) with respect to initial data.

There is a wide literature on first order partial functional differential problems, we
wish to mention some references on existence results.

There are various concepts of a solution concerning initial or mixed problems
for functional differential equations. Continuous functions satisfying integral systems
obtained by integrating original equations along bicharacteristics were considered
in [20]. Generalized solutions in the Carathéodory sense are investigated in [6, 19].
Results on the existence of solutions are obtained in these papers by using a method
of bicharacteristics. Classical solutions in the functional setting are studied in [3, 10].
Cinquini Cibrario solutions to nonlinear differential functional equations were first
treated in [4]. This class of solutions is placed between classical solutions and solutions
in the Carathéodory sense and both inclusions are strict. Existence results for initial
problems for semilinear equations can be found in [5]. Sufficient conditions for the
existence of classical solutions defined on the Haar pyramid are given in [15, 16].
Classical solutions and differentiability with respect to initial data for Volterra type
equations are studied in [14].

Theorems on the continuous dependence of solutions on initial or initial boundary
conditions are given in Chapters 4 and 5 of [11]. We expand Kamont’s theory. We
investigate functional differential equations with both Volterra and Fredholm functional
arguments. Moreover, the differentiability with respect to initial functions for partial
functional differential equations is proved in these papers. The monograph [9] contains
results on the differentiability of solutions for ordinary functional differential equations.

In [12,13] the existence and differentiability of classical solutions with respect to
initial functions for semilinear partial functional differential systems with arguments of
both Volterra and Fredholm type are considered. The initial problem is transformed into
a functional integral systems. The existence of global solutions is proved by a method
of successive approximations. Although the techniques used in our investigations are
based on the methods used in the above papers, there is a necessity to prove more
complicated conditions on the characteristics. The series of Gronwall type of integral
inequalities is proved in Section 2.1. The existence of solutions is proved locally.
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Until now there have not been results concerning existence and differentiability of
solutions with respect to initial functions for quasilinear partial functional differential
equations with arguments of both Volterra and Fredholm type.

Suppose that G : E ×C(E0 ∪E,R)→ R and g : E ×C(E0 ∪E,R)→ Rn are given
functions. Let us consider the functional differential equation

∂tz(t, x) + g(t, x, z) · ∂xz(t, x) = G(t, x, z), (1.3)
where z is the functional variable. It is clear that (1.1) is a particular case of (1.3).

We will say that G and g satisfy the Volterra condition if for each (t, x) ∈ E and for
z, z̃ ∈ C(E0∪E,R) such that z(τ, y) = z̃(τ, y) for (τ, y) ∈ (E0∪E)∩ ([−b0, t]×Rn) we
have G(t, x, z) = G(t, x, z̃) and g(t, x, z) = g(t, x, z̃). The Volterra condition means that
the value of G, g at (t, x, z) ∈ E × C(E0 ∪ E,R) depends on (t, x) and on restrictions
of z to the set (E0 ∪ E) ∩ ([−b0, t]× Rn) only.

Note that equation (1.1) do not satisfy the Volterra condition.
The results presented in [1,3–6,10–16,19,20] have the following property: functional

differential equations or systems considered in these papers satisfy the Volterra condi-
tion. Until now there have not been any results on functional differential equations of
the form (1.3), which do not satisfy the Volterra condition.

We give examples of functional differential equations which can be obtained from
(1.1) by specializing the functions F and f .
Example 1.1. Suppose that G : E × R × R → R, g : E × R × R → Rn are given
functions and F , f are defined by

F (t, x, v, w) = G(t, x, v(0,0), w(0,0)) on Ω, (1.4)
f(t, x, v, w) = g(t, x, v(0,0), w(0,0)) on Ω, (1.5)

where 0 = (0, . . . , 0) ∈ Rn. Then (1.1) reduces to the differential equation with
deviated variables

∂tz(t, x) + g(t, x, , z(ϕ(t, x)), z(t, x)) · ∂xz(t, x) = G(t, x, z(ϕ(t, x)), z(t, x)). (1.6)
Example 1.2. Suppose that ϕ(t, x) = (t, x) for (t, x) ∈ E and for the above G, g we
put

F (t, x, v, w) = G

(
t, x,

∫

V [t,x]

v(τ, s)dsdτ,
∫

D[t,x]

w(τ, s)dsdτ
)

on Ω, (1.7)

f(t, x, v, w) = g

(
t, x,

∫

V [t,x]

v(τ, s)dsdτ,
∫

D[t,x]

w(τ, s)dsdτ
)

on Ω. (1.8)

Then (1.1) reduces to the differential integral equation

∂tz(t, x) + g

(
t, x,

∫

V [t,x]

z(t,x)(τ, s)dsdτ,
∫

D[t,x]

z[t,x](τ, s)dsdτ
)
· ∂xz(t, x)

= G

(
t, x,

∫

V [t,x]

z(t,x)(τ, s)dsdτ,
∫

D[t,x]

z[t,x](τ, s)dsdτ
)
.

(1.9)
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It is clear that more complicated examples of differential equations with deviated
variables and differential integral equations can be obtained from (1.1) by specializing
the operators F , f .

Information on applications for differential integral equations and differential
equations with deviated variables can be found in monographs [11, 21] and papers
[2, 7, 8, 17,18].

We remark that our work is motivated by the applications given in the above
papers.

2. SEQUENCES OF SUCCESSIVE APPROXIMATIONS

For x = (x1, . . . , xn) ∈ Rn, let ‖x‖ = |x1| + . . . + |xn|. The maximum norms in
the spaces C(V [t, x],R) and C(D[t, x],R) are denoted by ‖ · ‖V [t,x] and ‖ · ‖D[t,x],
respectively. For t ∈ [0, a] and z ∈ C(E0 ∪ E,R), v ∈ C(E0 ∪ E,Rn), we define the
seminorms

‖z‖(t,R) = max{|z(τ, x)| : (τ, x) ∈ Et},
‖v‖(t,Rn) = max{‖v(τ, x)‖ : (τ, x) ∈ Et}.

Let L(Y,Z) be a class of all integrable functions form Y into Z.

Assumption H0[f, F ]. The functions f : Ω→ Rn, F : Ω→ R satisfies the following
proprieties:

1) f , F satisfy condition (V ) and f( ·, x, v, w) : I[x] → Rn, F ( ·, x, v, w) : I[x] → R,
are measurable for (x, v, w) ∈ [−b, b]× C(A,R)× C(B,R),

2) f(t, ·) : St × C(A,R) × C(B,R) → Rn, F (t, ·) : St × C(A,R) × C(B,R) → R are
continuous for almost all t ∈ [0, a],

3) the following estimation is fulfilled:

(
|f1(t, x, v, w)|, . . . , |fn(t, x, v, w)|

)
≤M ′(t), (t, x) ∈ E, a.e., (2.1)

4) there is γ0 ∈ L([0, a],R+) such that

‖F (t, x, 0, 0)‖ ≤ γ0(t) on E,

5) there are β, γ ∈ L([0, a],R+) such that

‖F (t, x, v, w)− F (t, x, v̄, w̄)‖ ≤ β(t)‖v − v̄‖A + γ(t)‖w − w̄‖B on Ω,

6)
∫ a

0 γ(τ)e
∫ a
τ
β(s)ds

dτ < 1.
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Assumption H[ϕ]. The functions ϕ0 : [0, a]→ R, ϕ̃ : E → Rn are continuous and

1) 0 ≤ ϕ0(t) ≤ t, (ϕ0(t), ϕ̃(t, x)) ∈ E for (t, x) ∈ E,
2) there is Q̃ ∈ R+ such that

‖ϕ̃(t, x)− ϕ̃(t, x̄)‖ ≤ Q̃‖x− x̄‖ on E.

Assumption H[κ]. The functions κ : E0 → R are continuous and there is L0 > 0 such
that

|κ(t, x)− κ(t, x̄)| ≤ L0‖x− x̄‖ on E0.

Let us denote by X the class of all κ : E0 → R satisfying Assumption H[κ].
Given κ ∈ X , we denote by Cκ[d], d ∈ R+, the set of all z ∈ C(E,R) such that

z(t, x) = κ(t, x) on E0 and |z(t, x)− z(t, x̄)| ≤ d‖x− x̄‖ on E.
Suppose that Assumptions H0[ f, F ], H[ϕ] are satisfied and κ ∈ X . Let us denote

by g[z]( ·, t, x) the solution of the Cauchy problem

η′(τ) = f(τ, η(τ), zϕ(τ,η(τ)), z[τ,η(τ)]), η(t) = x, (2.2)

where (t, x) ∈ E. The function g[z]( · , t, x) is the characteristic of equation (1.1).
Set

P [z](τ, t, x) =
(
τ, g[z](τ, t, x), zϕ(τ,g[z](τ,t,x)), z[τ,g[z](τ,t,x)]

)
.

Suppose that z ∈ Cκ[d]. Let us denote by F [z] the function defined by

F [z](t, x) = κ(0, g[z](0, t, x)) +
t∫

0

F (P [z](τ, t, x))dτ on E,

F [z](t, x) = κ(t, x) on E0.

Consider the functional integral equation

z = F [z]. (2.3)

We give estimates of solutions to (1.1), (1.2).

Lemma 2.1. Suppose that Assumption H0[f, F ] is satisfied and z̃ ∈ Cκ[d] is a solution
to (1.1), (1.2). Then the following estimation holds true:

‖z̃‖(t,R) ≤ exp
{ t∫

0

β(τ)dτ
}(
‖κ‖+

t∫

0

γ0(τ)dτ
)(

1 + Λ
t∫

0

γ(τ)dτ
)
, (2.4)

where

Λ = exp
{ a∫

0

β(τ)dτ
}(

1−
a∫

0

γ(τ) exp
{ a∫

τ

β(s)ds
}
dτ

)−1
. (2.5)
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Proof. It is clear that z̃ satisfies (2.3). Then we have

‖z̃‖(t,R) ≤ ‖κ‖+
t∫

0

β(τ)‖z̃‖(τ,R)dτ + ‖z̃‖(a,R)

t∫

0

γ(τ)dτ +
t∫

0

γ0(τ)dτ. (2.6)

Write

Ψ(t) = ‖κ‖+
t∫

0

β(τ)‖z̃‖(τ,R)dτ + ‖z̃‖(a,R)

t∫

0

γ(τ)dτ +
t∫

0

γ0(τ)dτ, t ∈ [0, c].

Then
Ψ′(t) ≤ β(t)Ψ(t) + ‖z̃‖(a,R)γ(t) + γ0(t)

for almost all t ∈ [0, c]. This gives

d
dt

[
Ψ(t) exp

{
−

t∫

0

β(τ)dτ
}]
≤
[
‖z̃‖(a,R)γ(t) + γ0(t)

]
exp

{
−

t∫

0

β(τ)dτ
}

for almost all t ∈ [0, a], and consequently

Ψ(t) ≤ ‖κ‖ exp
{ t∫

0

β(τ)dτ
}

+ ‖z̃‖(a,R)

t∫

0

γ(τ) exp
{ t∫

0

β(s)ds
}
dτ

+
t∫

0

γ0(τ) exp
{ t∫

τ

β(s)ds
}
dτ

for t ∈ [0, a]. The above inequality and (2.6) imply (2.4), (2.5). This completes the
proof.

2.1. INTEGRAL INEQUALITIES

In the present paper we consider functional differential equations which do not satisfy
the Volterra condition. We need a new comparison result for integral inequalities. More
precisely, we consider integral inequalities generated by the equation

y(t) = η +
t∫

0

C̃0(τ)dτ +
t∫

0

B̃(τ)y(τ)dτ + y(a)
t∫

0

C̃(τ)dτ, (2.7)

where B̃, C̃, C̃0 : [0, a]→ R+ and η ∈ R+.
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Lemma 2.2. Suppose that Ã, B̃, C̃, C̃0 ∈ L([0, c],R+), ω̃ ∈ C([0, a],R+) and η ∈ R+.

(i) There exists exactly one solution of the integral equation (2.7) if

a∫

0

C̃(s)e

a∫
s

B̃(τ)dτ
ds < 1. (2.8)

(ii) If
a∫

0

C̃(s)e

a∫
s

(Ã(τ)+B̃(τ))dτ
ds < 1, (2.9)

and ỹ : [0, a]→ R+ is a solution of the integral equation

y(t) = η +
t∫

0

C̃0(τ)dτ +
t∫

0

[Ã(τ) + B̃(τ)]y(τ)dτ + y(a)
t∫

0

C̃(τ)dτ, (2.10)

and

ω̃(t) ≤ η+
t∫

0

C̃0(τ)dτ+
t∫

0

Ã(τ)ω̃(τ)dτ+
t∫

0

B̃(τ)ỹ(τ)dτ+ ỹ(a)
t∫

0

C̃(τ)dτ, (2.11)

then
ω̃(t) ≤ ỹ(t) for t ∈ [0, a]. (2.12)

Proof. (i) Set

ȳ(t) = ηe

t∫
0

B̃(τ)dτ
+

t∫

0

C̃0(s)e

t∫
s

B̃(τ)dτ
ds+ C?

t∫

0

C̃(s)e

t∫
s

B̃(τ)dτ
ds, t ∈ (0, a],

where

C? =
[
ηe

a∫
0

B̃(τ)dτ
+

a∫

0

C̃0(s)e

a∫
s

B̃(τ)dτ
ds

][
1−

a∫

0

C̃(s)e

a∫
s

B̃(τ)dτ
ds

]−1
.

It follows that ȳ is the unique solution of the Cauchy problem corresponding to (2.7).
This completes the proof of the first part of the lemma.

(ii) It follows from (2.9) that there exists exactly one solution ỹ : [0, a] → R+
of (2.10). Write yε(t) = ω̃(t) − ω̃ε(t), t ∈ [0, a], where ε > 0 and ω̃ε is the solution
of the integral equation ω(t) = ε +

∫ t
0 Ã(τ)ω(τ)dτ . We will show that yε(t) < ỹ(t)

for t ∈ [0, a]. It is clear that yε(0) < ỹ(0). Suppose that there is t̃ ∈ (0, a] such that
yε(t) < ỹ(t) for t ∈ [0, t̃) and

yε(t̃) = ỹ(t̃). (2.13)



On the quasilinear Cauchy problem for a hyperbolic functional differential equation 923

Then

yε(t̃)− ỹ(t̃) = ȳ(t̃)− ωε(t̃)− ỹ(t̃) ≤
t̃∫

0

A(τ)[ȳ(τ)− ỹ(τ)]dτ − ωε(t̃) ≤ −ε

which contradicts (2.13). Therefore, yε(t) < ỹ(t) for t ∈ [0, a]. From this inequality we
obtain in the limit, letting ε tend to zero, estimate (2.12).

Now we prove a lemma on an integral inequality of the Fredholm type.
Lemma 2.3. Suppose that Ā, B̄, C̄ ∈ L([0, a],R+) and Ā is nondecreasing and con-
dition (2.8) holds and the function ω̃ ∈ L([0, a],R+) is the solution of the integral
inequality

y(t) ≤ Ā(t) +
t∫

0

B̄(τ)y(τ)dτ + y(a)
t∫

0

C̄(τ)dτ. (2.14)

Then

ω̃(t) ≤ Ā(t)e

t∫
0

B̄(τ)dτ
+ Ā(a)Λ?

t∫

0

C̄(s)e

t∫
s

B̄(τ)dτ
ds, (2.15)

where

Λ? = e

a∫
0

B̄(τ)dτ[
1−

a∫

0

C̄(τ)e

a∫
τ

B̄(s)ds
dτ

]−1
. (2.16)

Proof. Write

Ψ(t) =
t∫

0

B̄(τ)ω̃(τ)dτ + ω̃(a)
t∫

0

C̄(τ)dτ.

Then
Ψ′(t) ≤ B̄(t)[Ψ(t) + Ā(t)] + C̄(t)ω̃(a)

for almost all t ∈ (0, a] and

d
dt

[
Ψ(t)e

−
t∫

0

B̄(τ)dτ]
≤ e
−

t∫
0

B̄(τ)dτ
[Ā(t)B̄(t) + C̄(t)ω̃(a)].

This gives

Ψ(t) ≤ Ā(t)
[
e

t∫
0

B̄(τ)dτ
− 1
]

+ ω̃(a)
t∫

0

C̄(τ)e

t∫
τ

B̄(s)ds
dτ

and

ω̃(t) ≤ Ā(t)e

t∫
0

B̄(τ)dτ
+ ω̃(a)

t∫

0

C̄(τ)e

t∫
τ

B̄(s)ds
dτ. (2.17)
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It follows from (2.8) that ω̃(a) ≤ Λ? Ā(a). The last inequality and (2.17) imply (2.15).
This completes the proof.

2.2. CHARACTERISTICS

Denote

η(t) = exp
{ t∫

0

β(τ)dτ
}(
‖κ‖+

a∫

0

γ0(s)ds
)(

1 + Λ
t∫

0

γ(s)ds
)
.

Take r = η(a). Set

Ω[r] = {(t, x, v, w) ∈ Ω : ‖v‖A ≤ r, ‖w‖B ≤ r}.

Assumption H[f, F ]. Suppose that there is β0 ∈ L([0, a],R+) such that

‖F (t, x, v, w)− F (t, x̄, v, w)‖ ≤ β0(t)‖x− x̄‖ on Ω[r],

and there are α0, ρ0, λ0 ∈ L([0, a],R+) such that on Ω[r] the following estimations are
fulfilled:

‖f(t, x, v, w)− f(t, x̄, v̄, w̄)‖ ≤ α0(t)‖x− x̄‖+ ρ0(t)‖v − v̄‖A + λ0(t)‖w − w̄‖B ,

a∫

0

d · λ0(s)e

a∫
s

(α0(τ)+d·Q̃ρ0(τ))dτ
ds < 1, (2.18)

and moreover
a∫

0

(γ(τ) + ak(τ))e

a∫
s

(β(τ)+k(τ))dτ
ds < 1, (2.19)

where

k(τ) = (β(τ)Q̃dθ(τ) + dγ(τ)θ(a))
a∫

0

ρ0(w)dw

(θ(τ) is given in Lemma 2.4).

Lemma 2.4. If Assumptions H0[ f, F ], H[f, F ] are satisfied, then we have
(τ, g[z](τ, t, x)) ∈ E, τ ∈ [0, t], and

‖g[z]( · , t, x)− g[z]( · , t, x̄)‖(τ,Rn) ≤ θ(τ)‖x− x̄‖, (t, x), (t, x̄) ∈ E, (2.20)

and

‖g[z]( · , t, x)− g[z̃]( · , t, x̄)‖(τ,Rn)

≤ θ(τ)
( a∫

τ

ρ0(s)‖z − z̃‖(s,R)ds+ a‖z − z̃‖(a,R)

)
,

(2.21)
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where

θ(τ) = e

τ∫
0

(α0(ζ)+dQ̃ρ0(ζ))dζ
+ Λ? d

τ∫

0

λ0(s)e

τ∫
s

(α0(ζ)+dQ̃ρ0(ζ))dζ
ds

and Λ? is given by (2.16).

Proof. The existence and uniqueness of solutions of (2.2) follows from classical existence
theorems. We prove that the graph of the characteristic g[z]( ·, t, x) is in the E for
τ ∈ [0, t], (t, x) ∈ E. Suppose that [0, t] is an interval on which the characteristic
g[z]( ·, t, x) is defined. Then we have

−M ′(τ) ≤ d

dτ
g[z](τ, t, x) ≤M ′(τ) for τ ∈ [0, t],

and consequently

−b+M(τ) ≤ g[z](τ, t, x) ≤ b−M(τ) for τ ∈ [0, t].

This gives (τ, g[z](τ, t, x)) ∈ E for τ ∈ [0, t].
For (t, x), (t, x̄) ∈ E, it follows that the functions g[z]( · , t, x)− g[z]( · , t, x̄) satisfy

the integral inequalities

‖g[z](·, t, x)− g[z]( ·, t, x̄)‖(τ,Rn)

≤ ‖x− x̄‖

+
∣∣∣∣∣

t∫

τ

[
(α0(s) + ρ0(s)dQ̃)‖g[z]( ·, t, x)− g[z]( ·, t, x̄)‖(s,Rn)

+ d λ0(s)‖g[z]( ·, t, x)− g[z]( ·, t, x̄)‖(a,Rn)
]
ds

∣∣∣∣∣.

From Lemma 2.3 we obtain (2.20). Now we will show (2.21). We have that

‖g[z]( ·, t, x)− g[z̃]( ·, t, x)‖(τ,Rn)

≤
∣∣∣∣∣

t∫

τ

(α0(s) + ρ0(s)dQ̃)‖g[z]( ·, t, x)− g[z̃]( ·, t, x)‖(s,Rn)ds

+ d‖g[z]( ·, t, x)− g[z̃]( ·, t, x)‖(a,Rn)

t∫

τ

λ0(s)ds

+
t∫

τ

ρ0(s)‖z − z̃‖(s,R)ds+ ‖z − z̃‖(a,R)a

∣∣∣∣∣.

From Lemma 2.3 we obtain (2.21). This completes the proof.
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3. EXISTENCE OF SOLUTIONS

The proof of the existence of weak solutions to (2.3) is based on the following method of
successive approximations. Suppose that κ ∈ X and Assumptions H0[ f, F ], H[ f, F ],
H[ϕ ] are satisfied. We consider the sequence {z(m)}, where

z(m) : E0 ∪ E → R,

defined in the following way. We put

z(0)(t, x) = κ(t, x) on E0, z(0)(t, x) = κ(0, x) on E. (3.1)

If z(m) : E0 ∪ E → R is given, then z(m+1) is defined by

z(m+1) = F [z(m)]. (3.2)

Suppose that Assumptions H0[ f, F ], H[ f, F ] are satisfied. Write

L̃(t) = L0θ(a) exp
[ t∫

0

Z(τ)dτ
]

+
t∫

0

exp
[ t∫

τ

Z(s)ds
]
β0(τ)θ(τ)dτ,

where Z(t) = β(t)Q̃θ(t) + γ(t)θ(a) for t ∈ [0, a].
For the above L̃ ∈ L([0, a],R+), we denote by Cκ.r.L̃(E0 ∪ E,R) the set of all

z ∈ Cκ(E0∪E,R) such that |z(t, x)−z(t, x̄)| ≤ L̃(t)‖x− x̄‖ on E0∪E and |z(t, x)| ≤ r
on E0 ∪ E.

Now we formulate a theorem on the local existence of weak solutions of (1.1), (1.2).

Theorem 3.1. If Assumptions H0[ f, F ], H[ f, F ], H[ϕ ] are satisfied and
κ ∈ X , then there is a generalized solution z̄ : E0 ∪ E → R of (1.1), (1.2) and
z̄ ∈ Cκ.r.L̃(E0 ∪ E,R). If κ̃ ∈ X and z̃ is a generalized solution of equation (1.1) with
the initial condition

z̃(t, x) = κ̃(t, x) on E0,

then

‖z̄ − z̃‖(t,R) ≤
[

exp
{ t∫

0

l(τ)dτ
}

+ Λ
t∫

0

u(τ) exp
{ t∫

τ

l(s)ds
}
dτ

]
‖κ− κ̃‖, (3.3)

t ∈ [0, a], where Λ is given by (2.5) and

l(τ) = β(τ) +
a∫

0

ρ0(s)ds(β(τ)Q̃L̃(τ)θ(τ) + γ(τ)L̃(a)θ(a)),

u(τ) = γ(τ) + a

a∫

0

ρ0(s)ds(β(τ)Q̃L̃(τ)θ(τ) + γ(τ)L̃(a)θ(a)).
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Proof. We first prove that z(m) ∈ Cκ.r.L̃(E0 ∪ E,R). By virtue of the definition
of L̃ we have |z(0)(t, x)| ≤ r, therefore z(0) ∈ Cκ.r.L̃(E0 ∪ E,R). Suppose that
z(m) ∈ Cκ.r.L̃(E0 ∪ E,R) is given, m ≥ 0. We will show that z(m+1) has the same
property. It follows from Assumption H[ f, F ] that

|z(m+1)(t, x)− z(m+1)(t, x̄)| ≤ L0‖g[z](0, t, x)− g[z](0, t, x̄)‖

+
t∫

0

{
β0(τ) + β(τ)L̃(τ)Q̃+ γ(τ)L̃(τ)

}
‖g[z](τ, t, x)− g[z](τ, t, x̄)‖dτ

≤ L̃(t)‖x− x̄‖.

Moreover, if we assume that ‖z(m)(t, x)‖∞ ≤ r, then for m+ 1 we have

‖z(m+1)‖(t,R) ≤ ‖κ‖X +
t∫

0

β(τ)‖z(m)‖(τ,R)dτ

+ ‖z(m)‖(a,R)

t∫

0

γ(τ)dτ +
t∫

0

γ0(τ)dτ ≤ r.

The above relation implies z(m) ∈ Cκ.r.L̃(E0 ∪ E,R) for m > 0.
Now we prove that the sequence {z(m)} is uniformly convergent on E0 ∪E. Define

function γ̃0 ∈ L([0, a],R+) by the relation

‖z(0) −F [z(0)]‖(t,R) ≤
t∫

0

γ̃0(τ)dτ, t ∈ [0, a].

Define the sequence {ω(k)} as follows: {ω(0)} is a solution of the Cauchy problem

ω′(t) = β(t)ω(t) + ω(a)γ(t) + γ̃0(t), ω(0) = 0. (3.4)

If ω(m) is a known function, then ω(m+1)(t) is given by

ω(m+1)(t) =
t∫

0

β(τ)ω(m)(τ)dτ + ω(m)(a)
t∫

0

γ(τ)dτ.

From condition 6) of Assumption H0[f, F ] it follows that there is exactly one solutions
to the problem (3.4).

It can be easily seen that

0 ≤ ω(m+1)(t) ≤ ω(m)(t) for t ∈ [0, a] and m ≥ 0.

Hence, there is ω̃(t) = lim
m→∞

ω(m)(t) on [0, a] uniformly. From condition 6) of Assump-
tion H0[f, F ] we have ω̃(t) = 0.
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It is easy to show that {z(m)} is a Cauchy sequence in Cκ.r.L̃(E0 ∪ E,R), i.e.

‖z(m+p) − z(m)‖(t,R) ≤ ω(m)(t), t ∈ [0, a], m, p ≥ 0.

Furthermore, we have that

z̄(t, x) = F [z̄](t, x), (t, x) ∈ E. (3.5)

For a given (t, x) ∈ E let us put y = g[z̄](0, t, x). It follows that g[z̄](τ, t, x) =
g[z̄](τ, 0, y). We conclude from (3.5) that

z̄(t, g[z̄](t, 0, y)) = κ(0, y)

+
t∫

0

F
(
τ, g[z̄](τ, 0, y), z̄ϕ(τ,g[z̄](τ,0,y)), z̄[τ,g[z̄](τ,0,y)]

)
dτ.

(3.6)

The relations y = g[z̄](0, t, x) and x = g[z̄](t, 0, y) are equivalent. By differentiating
(3.6) with respect to t and by putting again x = g[z̄](t, 0, y) we obtain that z̄ satisfies
(1.1) on E.

Now we prove inequality (3.3). First we take

‖z̄ − z̃‖(t,Rk) ≤ ‖κ− κ̃‖X +
t∫

0

[l(τ)‖z̄ − z̃‖(τ,R) + u(τ)‖z̄ − z̃‖(a,R)]dτ.

The inequality (3.3) follows directly from Lemma 2.3. This completes the proof.

4. DIFFERENTIABILITY OF SOLUTIONS
WITH RESPECT TO INITIAL FUNCTIONS

We denote by CL(A,R) and CL(B,R) the class of linear continuous functionals defined
on C(A,R) and C(B,R) respectively. The norms in CL(A,R) and CL(B,R) generated
by the maximum norms in C(A,R) and C(B,R) will be denoted by ‖ · ‖A? and ‖ · ‖B?,
respectively.
Assumption H∗[ f, F ]. The functions f : E → Rn, F : E × C(A,R)× C(B,R)→ R
satisfy the following conditions:
1) there exist the derivatives

∂xf =
[
∂xjfi

]
i,j=1,...,n

on Ω and ∂xfi( ·, x, v, w) : I[x]→ Rn is integrable for (x, v, w) ∈ [−b, b]×C(A,R)×
C(B,R) and ∂xf(t, ·) : St × C(A,R)× C(B,R)→ Rn is continuous for almost all
t ∈ I[x],

2) the derivatives ∂xF = (∂x1F, . . . , ∂x2F ) exist on Ω and ∂xF ( ·, x, v, w) : I[x]→ Rn
is integrable for (x, v, w) ∈ [−b, b]×C(A,R)×C(B,R) and ∂xF (t, ·) : St×C(A,R)×
C(B,R)→ Rn is continuous for almost all t ∈ I[x],
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3) the Fréchet derivatives ∂vf(t, x, v, w) = (∂vf1(t, x, v, w), . . . , ∂vfn(t, x, v, w)),
∂wf(t, x, v, w) = (∂wf1(t, x, v, w), . . . , ∂wfn(t, x, v, w)) exist for (t, x, v, w) ∈ Ω
and ∂vfi(t, x, v, w) ∈ CL(A,R), ∂wfi(t, x, v, w) ∈ CL(B,R) for i = 1, . . . , n,
(t, x, v, w) ∈ Ω,

4) the functions ∂vfi( ·, x, v, w)ṽ : I[x] → R are integrable for (x, v, w) ∈ [−b, b] ×
C(A,R)× C(B,R), ṽ ∈ C(A,R) and ∂wfi( ·, x, v, w)w̃ : I[x]→ Rn is integrable for
(x, v, w) ∈ [−b, b]× C(A,R)× C(B,R), w̃ ∈ C(B,R), i = 1, . . . , n,

5) the Fréchet derivatives ∂vF (t, x, v, w), ∂wF (t, x, v, w) exist for (t, x, v, w) ∈ Ω and
∂vF (t, x, v, w) ∈ CL(A,R), ∂wF (t, x, v, w) ∈ CL(B,R) for (t, x, v, w) ∈ Ω,

6) the functions ∂vF ( ·, x, v, w)ṽ : I[x] → R is integrable for (x, v, w) ∈ [−b, b] ×
C(A,R)× C(B,R), ṽ ∈ C(A,R) and ∂wF ( ·, x, v, w)w̃ : I[x]→ Rn is integrable for
(x, v, w) ∈ [−b, b]× C(A,R)× C(B,R), w̃ ∈ C(B,R),

7) there are α0, α1, α2, β0, β, γ ∈ L([0, a],R+) such that

‖∂xfi(P )‖ ≤ α0(t), ‖∂vfi(P )‖A? ≤ α1(t), ‖∂wfi(P )‖B? ≤ α2(t),

‖∂xF (P )‖ ≤ β0(t), ‖∂vF (P )‖A? ≤ β(t), ‖∂wF (P )‖B? ≤ γ(t)

for P = (t, x, v, w) ∈ Ω,
8) there is L ∈ L([0, a],R+) such that

‖∂xF (t, x, v, w)− ∂xF (t, x̃, ṽ, w̃)‖ ≤ L(t)(‖x− x̃‖+ ‖v − ṽ‖A − ‖w − w̃‖B),

‖∂vF (t, x, v, w)− ∂vF (t, x̃, ṽ, w̃)‖A? ≤ L(t)(‖x− x̃‖+ ‖v − ṽ‖A − ‖w − w̃‖B),

‖∂wF (t, x, v, w)− ∂wF (t, x̃, ṽ, w̃)‖B? ≤ L(t)(‖x− x̃‖+ ‖v − ṽ‖A − ‖w − w̃‖B)

for (t, x) ∈ E, v, ṽ ∈ C(A,R), w, w̃ ∈ C(B,R).

Suppose that Assumptions H0[ f, F ], H[ f, F ], H∗[ f, F ], H[ϕ ], H[ L̃ ] are satisfied
and κ ∈ X .

The next theorem states that for each κ ∈ X there exists the Fréchet derivative of
the solution to the problem (1.1), (1.2) with respect to the initial function.

We will denote by z( · ;κ) the solution of (1.1) with the initial condition z(t, x) =
κ(t, x) on E0.

Theorem 4.1. If Assumptions H0[ f, F ], H[ f, F ], H∗[ f, F ] and H[ϕ ] are satisfied,
then for each κ ∈ X there exists the Fréchet derivative of the solution to the problem
(1.1), (1.2) with respect to initial functions. Moreover, if κ, χ ∈ X and z∗ is the Fréchet
derivative of solution, then z∗ is a solution of the equation

z = Λ[z], (4.1)
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where on E
Λ[z](t, x) = ∂xχ(0, g[z( · ;κ)](0, t, x))∂zg[z( · ;κ)](0, t, x) z

+
t∫

0

∂xF (P [z( · ;κ)](τ, t, x))∂zg[z( · ;κ)](τ, t, x) z dτ

+
t∫

0

∂vF (P [z( · ;κ)](τ, t, x))zϕ(τ,g[z( ·;κ)](τ,t,x))dτ

+
t∫

0

∂vF (P [z( · ;κ)](τ, t, x))∂xz( ·;κ)ϕ(τ,g[z( ·;κ)](τ,t,x))

∂xϕ(τ, g[z( ·;κ)](τ, t, x))∂zg[z( ·;κ)](τ, t, x) z dτ

+
t∫

0

∂wF (P [z( · ;κ)](τ, t, x))z[τ,g[z( ·;κ)](τ,t,x)]dτ

+
t∫

0

∂wF (P [z( · ;κ)](τ, t, x))∂xz( ·;κ)[τ,g[z( ·;κ)](τ,t,x)]

∂zg[z( ·;κ)](τ, t, x) z dτ.

Proof. First we calculate differential quotients for the given functions

∆s(t, x) = 1
s

[z(t, x;κ+ sχ)− z(t, x;κ)] on E,

where s ∈ R, s 6= 0. Using the mean value theorem we will obtain formula similar to
(4.1) with the functions given in the mean points, and the differential quotient ∆s

instead of z∗. The outcome of these calculations will be denoted by Λs[z](t, x).
We conclude from Assumption H∗[ f, F ] that the function ∆s satisfies the integral

functional equation
z = Λs[z].

It is easily seen that there exists exactly one solution z∗ ∈ Cχ(E0 ∪E,R), of equation
(4.1). We thus get the formula for (z∗−∆s)(t, x) on E. It follows from the above relations
and from conditions 5), 6) of Assumption H∗[ f, F ] that there is L̃0 ∈ L([0, a],R+)
such that

‖z∗ −∆s‖(t,R)

≤
t∫

0

L̃0(τ)
(
‖z( · ;κ+ sχ)− z( · ;κ)‖(τ,R) + ‖z( · ;κ+ sχ)− z( · ;κ)‖(a,R)

)
dτ

+
t∫

0

β(τ)‖z∗ −∆s‖(τ,R)dτ +
t∫

0

γ(τ)‖z∗ −∆s‖(a,R)dτ, t ∈ [0, a].
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From Lemma 2.3 we obtain

‖z∗ −∆s‖(t,R) ≤ ‖z∗ −∆s‖(a,R)

t∫

0

γ(τ) exp
{ t∫

τ

β(ξ)dξ
}
dτ

+ exp
{ t∫

0

β(τ)dτ
} t∫

0

L̃0(τ)
(
‖z( ·;κ+ sχ)− z( ·;κ)‖(τ,R)

+ ‖z( · ;κ+ sχ)− z( · ;κ)‖(a,R)
)
dτ.

(4.2)

We conclude from Theorem 3.1 that there is a function Γ(t) such that

‖z( ·;κ+ sχ)− z( ·;κ)‖(t,R) ≤ Γ(t) |s| ‖χ‖(0,R)

and
‖z( ·;κ+ sχ)− z( ·;κ)‖(a,R) ≤ Γ(a) |s| ‖χ‖(0,R).

Then

‖z∗ −∆s‖(a,R) ≤ Λ
a∫

0

L̃0(τ)(Γ(τ) + Γ(a))dτ |s| ‖χ‖(0,R). (4.3)

In conclusion,

‖z∗ −∆s‖(t,R) ≤ Γ(t)
a∫

0

L̃0(τ)[Γ(τ) + Γ(a)]dτ |s| ‖χ‖(0,R).

From (4.2) and (4.3) we obtain that there exist, lim
s→0

∆s and

lim
s→0

∆s(t, x) = z∗(t, x) uniformly on E.

This proves the theorem.

REFERENCES

[1] V.E. Abolina, A.D. Myshkis, Mixed problem for semilinear hyperbolic systems on the
plane, Mat. Sb. 50 (1960), 423–442 [in Russian].

[2] P. Bassanini, M.C. Salvadori, Un problema ai limiti per sistemi integrodifferenziali
nonlineari di tipo iperbolico, Boll. Un. Mat. Ital. B 5 (1981) 13, 785–798.

[3] P. Brandi, R. Ceppitelli, Existence, uniqueness and continuous dependence for hereditary
nonlinear functional partial differential equation of the first order, Ann. Polon. Math.
47 (1986) 2, 121–136.

[4] P. Brandi, A. Salvadori, Z. Kamont, Existence of generalized solutions of hyperbolic
functional differential equations, Nonlinear Anal. 50 (2002) 7, 919–940.



932 Elżbieta Puźniakowska-Gałuch

[5] W. Czernous, Semilinear hyperbolic functional differential problem on a cylindrical
domain, Bull. Belg. Math. Soc. Simon Stevin 19 (2012) 1, 1–17.

[6] T. Człapiński, Z. Kamont, Generalized solutions of local initial problems for quasi-linear
hyperbolic functional-differential systems, Studia Sci. Math. Hungar. 35 (1999) 1–2,
185–206.

[7] W. Eichhorn, W. Gleissner, On a functional differential equation arising in the theory
of the distribution of wealth, Aequationes Math. 28 (1985), 190–198.

[8] M. El Doma, Analysis of nonlinear integro-differential equations arising in the
age-dependent epidemic models, Nonlinear Anal. 11 (1987), 913–937.

[9] J.H. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations,
Springer-Verlag, Berlin, 1993.

[10] D. Jaruszewska-Walczak, Existence of solutions of first order partial differential-functio-
nal equations, Boll. Un. Mat. Ital. B 4 (1990) 1, 57–82.

[11] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications,
Mathematics and its Applications, vol. 486, Kulwer Academic Publishers, Dordrecht,
1999.

[12] E. Puźniakowska-Gałuch, Generalized Cauchy problems for hyperbolic functional differ-
ential systems, Ann. Polon. Math. 110 (2014), 33–53.

[13] E. Puźniakowska-Gałuch, Initial problems for hyperbolic functional differential systems,
Georgian Math. J. 20 (2013) 2, 357–376.

[14] E. Puźniakowska-Gałuch, Differentiability with respect to initial functions for partial
functional differential equations, Univ. Iag. Acta Math. 48 (2010), 111–131.

[15] E. Puźniakowska-Gałuch, On the local Cauchy problem for first order partial differential
functional equations, Ann. Polon. Math. 98 (2010), 39–61.

[16] E. Puźniakowska, Classical solutions of quasilinear functional differential systems on
the Haar pyramid, Diff. Equat. and Appl. 1 (2009) 2, 179–197.

[17] E. Sinestrari, G.F. Webb, Nonlinear hyperbolic systems with nonlocal boundary conditions,
J. Math. Anal. Appl. 121 (1987), 449–464.

[18] J. Szarski, On integro-differential equations, Ann. Polon. Math. 14 (1964), 321–333.

[19] J. Turo, A boundary value problem for hyperbolic systems of differential-functional
equations, Nonlinear Anal. 13 (1989) 1, 7–18.

[20] J. Turo, Local generalized solutions of mixed problems for quasilinear hyperbolic systems
of functional partial differential equations in two independent variables, Ann. Polon.
Math. 49 (1989) 3, 259–278.

[21] J. Wu, Theory and Applications of Partial Functional-Differential Equations, Applied
Mathematical Sciences, 119, Springer-Verlag, New York, 1996.



On the quasilinear Cauchy problem for a hyperbolic functional differential equation 933

Elżbieta Puźniakowska-Gałuch
Elzbieta.Galuch@mat.ug.edu.pl

University of Gdańsk
Institute of Mathematics
Wit Stwosz Street 57
80-952 Gdańsk, Poland

Received: August 17, 2014.
Revised: November 3, 2014.
Accepted: November 4, 2014.


