PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Enhancing energy efficiency in high-speed craft: a trigeneration energy recovery system for LNG-fuelled vessels in the Mediterranean Sea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents an integrated energy recovery system for high-speed craft, which was developed to improve fuel efficiency and reduce emissions in maritime transport. The proposed system consists of three subsystems: cold Energy recovery from LNG vaporisation, an organic Rankine cycle, and a Seebeck effect generator for waste heat utilisation. A comparative evaluation of five organic fluids was conducted to identify the optimal working fluid for both the cold energy and organic Rankine subsystems, with R1233zd(E) giving the highest efficiency. The results indicate that the proposed energy recovery system can reduce fuel consumption and emissions, achieving CO2-equivalent reductions of up to 1,784.7 tons annually. These findings highlight the potential of combined energy recovery technologies in aligning maritime operations with increasingly stringent environmental regulations.
Rocznik
Tom
Strony
94--105
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of Marine Science and Technology, University of Oviedo, Gijón, Spain
  • Department of Marine Science and Technology, University of Oviedo, Gijón, Spain
Bibliografia
  • 1. IPCC. Climate change 2021: The physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. In Press. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2021. https://doi.org/10.1017/9781009157896.
  • 2. Calvin K, Dasgupta D, Krinner G, Mukherji A, Thorne PW, Trisos C, et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the sixth assessment report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. 2023. https://doi.org/10.59327/IPCC/AR6-9789291691647.
  • 3. United Nations. The sustainable development goals report 2024. New York: 2024. https://unstats.un.org/sdgs/report/2024/ (accessed February 22, 2025).
  • 4. UNCTAD. Review of maritime transport 2023. United Nations; 2023. https://doi.org/10.18356/9789213584569. 5. International Maritime Organization (IMO). Fourth IMO greenhouse gas study. International Maritime Organization; 2021, pp. 951–2.
  • 6. Bilgili L, Olcer AI. IMO 2023 strategy–Where are we and what’s next? Mar Policy 2024, vol. 160, p. 105953. https://doi.org/10.1016/j.marpol.2023.105953.
  • 7. DNV. DNV alternative fuels insight 2025. https://afi.dnv.com/statistics (accessed February 19, 2025).
  • 8. Bao J, Yuan T, Zhang L, Zhang N, Zhang X, He G. Comparative study of liquefied natural gas (LNG) cold energy power generation systems in series and parallel. Energy Convers Manag 2019, vol. 184, pp. 107–26. https://doi.org/10.1016/j.enconman.2019.01.040.
  • 9. Li Y, Li B, Deng F, Yang Q, Zhang B. Research on the application of cold energy of largescale LNG-powered container ships to refrigerated containers. Polish Marit Res 2021, vol. 28, pp. 107–21. https://doi.org/10.2478/pomr-2021-0053.
  • 10. Ahn J, Park SH, Jeong J, Lee S, Ryu J, Park J. Eco-efficient marine power system with cooled air ventilation by waste LNG cold energy for reefer holds in an ultra-large container ship. J Clean Prod 2021, vol. 322, pp. 129037. https://doi.org/10.1016/j.jclepro.2021.129037.
  • 11. Yao S G, Zhang Z, Wei Y, Liu R. Integrated design and optimization research of LNG cold energy and main engine exhaust heat utilization for LNG powered ships. Case Stud Therm Eng 2022, vol. 33, p. 101976. https://doi.org/10.1016/j.csite.2022.101976.
  • 12. Shu G, Liu B, Tian H, Li L, Sun R, Wang X. A cryogenic CO2 capture system coupled with boil-off gas re-liquefaction for LNG carriers. Sep Purif Technol 2025, vol. 362, p. 131783. https://doi.org/10.1016/j.seppur.2025.131783.
  • 13. Gao W, Zheng H, Zhang Y, Tian Z, Zhou J, Jin X. Simulation and optimization of a dual-loop organic Rankine cycleonboard carbon capture system for LNG-powered ships. J Clean Prod 2025, vol. 486, p. 144512. https://doi.org/10.1016/j.jclepro.2024.144512.
  • 14. Diaz-Secades LA, Bouzon R. Reducing the carbon footprint of LNG shipping: Implementation of a combined waste heat recovery system in the onboard incinerator for lower environmental impact. Energy 2025, vol. 314, p. 134271. https://doi.org/10.1016/j.energy.2024.134271.
  • 15. Niknam PH, Fisher R, Ciappi L, Sciacovelli A. Optimally integrated waste heat recovery through combined emerging thermal technologies: Modelling, optimization and assessment for onboard multi-energy systems. Appl Energy 2024, vol. 366, p. 123298. https://doi.org/10.1016/j.apenergy.2024.123298.
  • 16. Ketfi M, Djermouni M, Ouadha A. Thermodynamic-based omparison of ORC, TFC and OFC systems for waste heat recovery from a marine diesel engine. J Marit Res 2024, vol. 21, pp. 54–8.
  • 17. Diaz-Secades LA, Gonzalez R, Rivera N, Quevedo JR, Montanes E. Parametric study of organic Rankine working fluids via Bayesian optimization of a preference learning ranking for a waste heat recovery system applied to a case study marine engine. Ocean Eng 2024, vol. 306, p. 118124. https://doi.org/10.1016/j.oceaneng.2024.118124.
  • 18. Nour Eddine A, Chalet D, Faure X, Aixala L, Chesse P. Optimization and characterization of a thermoelectric generator prototype for marine engine application. Energy 2018, vol. 143, pp. 682–95. https://doi.org/10.1016/j.energy.2017.11.018.
  • 19. Kristiansen NR, Nielsen HK. Potential for usage of thermoelectric generators on ships. J Electron Mater 2010, vol. 39, pp. 1746–9. https://doi.org/10.1007/s11664-010-1189-1.
  • 20. Liu C, Ye W, Li H, Liu J, Zhao C, Mao Z, et al. Experimental study on cascade utilization of ship’s waste heat based on TEG-ORC combined cycle. Int J Energy Res 2021, vol. 45, pp. 4184–96. https://doi.org/10.1002/er.6083.
  • 21. Liu C, Li H, Ye W, Liu J, Wang H, Xu M, et al. Simulation research of TEG-ORC combined cycle for cascade recovery of vessel waste heat. Int J Green Energy 2021, vol. 18, pp. 1173–84. https://doi.org/10.1080/15435075.2021.1897824.
  • 22. Elkafas AG. Parametric study and techno-economic analysis of a novel integration between thermoelectric generator and organic Rankine cycle onboard passenger ship. J Therm Anal Calorim 2024, vol. 149, pp. 6385–404. https://doi.org/10.1007/s10973-024-13186-5.
  • 23. Bell IH, Wronski J, Quoilin S, Lemort V. Pure and pseudopure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind Eng Chem Res 2014, vol. 53, pp. 2498–508. https://doi. org/10.1021/ie4033999.
  • 24. ASHRAE Standard 34-2019, Walter WF, Kennoy DH, Brock WJ, Dideon DA, Doerr RG, et al. Designation and Safety classification of refrigerants. vol. 2019. Atlanta: 2022.
  • 25. Wu X, Zhang X, Tang F, Xu S, Dang C, Sun D. Flammability inhibition effects of R227ea, R125, R134a, and R744 on 3,3,3-trifluoropropene (R1243zf). Int J Refrig 2022, vol. 134, pp. 55–63. https://doi.org/10.1016/j.ijrefrig.2021.11.019.
  • 26. Diaz-Secades LA, Gonzalez R, Rivera N. Waste heat recovery from marine main medium speed engine block. Energy, exergy, economic and environmental (4E) assessment – Case study. Ocean Eng 2022, vol. 264, p. 112493. https://doi.org/10.1016/j.oceaneng.2022.112493.
  • 27. TECTEG MFR. Performance curves of scavenger module TEG2-126LDT. Ontario: 2019.
  • 28. International Organization for Standardization. ISO 15550:2016 Internal combustion engines—Determination and method for the measurement of engine power 2016:43.
  • 29. Ouyang T, Wang Z, Zhao Z, Lu J, Zhang M. An advanced marine engine waste heat utilization scheme: Electricitycooling cogeneration system integrated with heat storage device. Energy Convers Manag 2021, vol. 235, p. 113955. https://doi.org/10.1016/j.enconman.2021.113955.
  • 30. Liu X, Nguyen MQ, Chu J, Lan T, He M. A novel waste heat recovery system combining steam Rankine cycle and organic Rankine cycle for marine engine. J Clean Prod 2020, vol. 265, p. 121502. https://doi.org/10.1016/j.jclepro.2020.121502.
  • 31. Lecompte S, Huisseune H, van den Broek M, Vanslambrouck B, De Paepe M. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew Sustain Energy Rev 2015, vol. 47, pp. 448–61. https://doi.org/10.1016/j.rser.2015.03.089.
  • 32. International Maritime Organization (IMO). Resolution MEPC.391 (81) 2024 Guidelines on life cycle GHG intensityof marine fuels. 2024.
  • 33. Le S, Lee JY, Chen CL. Waste cold energy recovery from liquefied natural gas (LNG) regasification including pressure and thermal energy. Energy 2018, vol. 152, pp. 770–87. https://doi.org/10.1016/j.energy.2018.03.076.
  • 34. Koo J, Oh SR, Choi YU, Jung JH, Park K. Optimization of an organic Rankine cycle system for an LNG-powered ship. Energies 2019, vol. 12, p. 1933. https://doi.org/10.3390/en12101933.
  • 35. Araya S, Wemhoff AP, Jones GF, Fleischer AS. An experimental study of an organic Rankine cycle utilizing HCFO-1233zd(E) as a drop-in replacement for HFC-245fa for ultra-low-grade waste heat recovery. Appl Therm Eng 2020, vol. 180, p. 115757. https://doi.org/10.1016/j.applthermaleng.2020.115757.
  • 36. Zhang X, Wang X, Yuan P, Ling Z, Bian X, Wang J, et al. Experimental study on the comparative performance of R1233zd(E) and R123 for organic Rankine cycle for engine waste heat recovery. Int J Green Energy 2024, vol. 21, pp. 3305–12. https://doi.org/10.1080/15435075.2024.2376734.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d7caea6-d364-4be4-90b7-90ad7970ff1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.