Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper introduces a new modification to the motion planning algorithm of nonholonomic robotic systems using the endogenous configuration space approach which allows imposing restrictions on control functions. The end and via points define the values which the control function should take in a predefined time, either at the beginning, the end or during the motion time horizon. Such a modification can be used to set the values of the control function, which usually are of velocity-like type, to be physically realizable. The constraints are introduced to the algorithm through the extension of the Jacobian. The efficiency of the presented method is shown with the computer simulation results for a nonholonomic space manipulator. A modified Jacobian motion planning algorithm is used for planning consisting of a sequence of two subtasks.
Rocznik
Tom
Strony
art. no. e153427
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
- Department of Cybernetics and Robotics, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
- [1] K. Tchoń, “Endogenous configuration space approach: an intersection of robotics and control theory,” in Nonlinear systems: Techniques for dynamical analysis and control, ser. Lecture Notes in Control and Information Sciences, N. van de Wouw, E. Lefeber, and I.L. Arteaga, Eds. Cham: Springer, 2017, vol. 470, pp. 209–234.
- [2] K. Tchoń and J. Jakubiak, “Endogenous configuration space approach to mobile manipulators: a derivation and performance assessment of Jacobian inverse kinematics algorithms,” Int. J. Control, vol. 26, no. 14, pp. 1387–1419, 2003.
- [3] A. Ratajczak, “Egalitarian versus prioritarian approach in multiple task motion planning for nonholonomic systems,” Nonlinear Dyn., vol. 88, no. 3, pp. 1733–1747, 2017.
- [4] K. Zadarnowska and K. Tchoń, “Modeling and motion planning of wheeled mobile robots subject to slipping,” in RoMoCo’15: 10th International Workshop on Robot Motion and Control, Poznań, Poland, 2015, pp. 78–83.
- [5] A. Ratajczak and K. Tchoń, “Multiple-task motion planning of non-holonomic systems with dynamics,” Mech. Sci., vol. 4, no. 1, pp. 153–156, 2013.
- [6] M. Janiak and K. Tchoń, “Constrained motion planning of nonholonomic systems,” Syst. Control Lett., vol. 60, no. 8, pp. 625–631, 2011.
- [7] A. Ratajczak, “Trajectory reproduction and trajectory tracking problem for the nonholonomic systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 1, pp. 63–70, 2016.
- [8] W. Xu, C. Li, X. Wang, Y. Liu, B. Liang, and Y. Xu, “Study on non-holonomic Cartesian path planning of a free-floating space robotic system,” Adv. Robot., vol. 23, no. 1-2, pp. 113–143, 2009.
- [9] W. Xu, Y. Liu, B. Liang, Y. Xu, C. Li, and W. Qiang, “Non-holonomic path planning of a free-floating space robotic system using genetic algorithms,” Adv. Robot., vol. 22, no. 4, pp. 451–476, 2008.
- [10] I. Tortopidis and E. Papadopoulos, “On point-to-point motion planning for underactuated space manipulator systems,” Robot. Autonom. Syst., vol. 55, no. 2, pp. 122 – 131, 2007.
- [11] I. Dulęba and I. Karcz-Dulęba, “Sub-optimal motion planning of one-chained, two-input nonholonomic systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 3, p. e145684, 2023.
- [12] G. Misra and X. Bai, “Task-constrained trajectory planning of free-floating space-robotic systems using convex optimization,” J. Guid. Control Dyn., vol. 40, no. 11, pp. 2857–2870, 2017.
- [13] I. Dulęba and M. Opałka, “Motion planning of strongly control-lable stratified systems,” Robotica, vol. 34, no. 10, p. 2223–2240, 2016.
- [14] N. Wada, S. Tagami, and M. Saeki, “Path-following control of a mobile robot in the presence of actuator constraints,” Adv. Robot., vol. 21, no. 5–6, pp. 645–659, 2007.
- [15] T. Rybus, K. Seweryn, and J. Sąsiadek, “Control system for free-floating space manipulator based on nonlinear model predictive control (nmpc),” J. Intell. Robot. Syst., vol. 85, no. 3-4, pp. 491–509, 2017.
- [16] W. Domski and A. Mazur, “Input-output decoupling for a 3d free-floating satellite with a 3r manipulator with state and input disturbances,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 6, pp. 1031–1039, 2019.
- [17] T. Rybus et al., “Motion controller for the TITAN robotic manipulator dedicated for on-orbit servicing operations,” in 17th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), 2023.
- [18] C. Ogundipea and A. Ellery, “Bio-inspired adaptive control of robotic manipulators for space debris removal and on-orbit servicing,” in 17th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), 2023.
- [19] S. Asci and A. Nanjangud, “Contact dynamics and autonomous control during rendezvous and berthing maneuvers,” in 17th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), 2023.
- [20] M. D’Ambrosio, L. Capra, and M. Lavagna, “Deep reinforcement learning for reactive ios space manipulator operations,” in 17th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), 2023.
- [21] K. Tchoń, “Endogenous configuration space approach in robotics research,” in Automatic Control, Robotics, and Information Processing, P. Kulczycki, J. Korbicz, and J. Kacprzyk, Eds. Cham: Springer International Publishing, 2021, pp. 425–454.
- [22] E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems (2nd Ed.). Berlin, Heidelberg: Springer-Verlag, 1998.
- [23] T. Rybus et al., “Application of a planar air-bearing microgravity simulator for demonstration of operations required for an orbital capture with a manipulator,” Acta Astronaut., vol. 155, pp. 211–229, 2019.
- [24] E. Papadopoulos, “On the dynamics and control of space manipulators,” Ph.D. dissertation, MIT, 1990.
- [25] K. Tchoń and J. Ratajczak, “General lagrangian jacobian motion planning algorithm for affine robotic systems with application to a space manipulator,” in 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), 2017, pp. 909–914.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d74c7fa-1158-4f58-b533-f7d2516c7208
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.