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1. Introduction 

Repairable system analysis is in nature an evaluation 

of repair effects. Recent tendency in reliability 

engineering literature was estimating system repair 

effects or linking repair to certain covariate to extract 

repair impacts by imposing repair regimes to the 

system. Guo [3], [4] proposed an approach to isolate 

repair effects in terms of grey differential equation 

modelling, particularly, the one-variable first order 

differential equation model, abbreviated as GM (1,1) 

model, initiated by Deng [2]. The efforts of modelling 

of system repair effects in terms of grey differential 

equation models has attracted attention from because 

it is easy to calculated, for example, in Microsoft 

Excel. However, there were two fundamental 

problems necessary to be addressed. The first issue is 

the nature of the GM(1,1) model. In The second 

fundamental problem is GM(1,1) model is a 

deterministic approach and is just a delicate 

approximation approach and in nature ignores the 

regression error structure, which may be very 

reasonable if the sample size is too small, however, in 

general, Deng's approach results in information loss, 

particularly he used the adjective word "grey", 

implying grey uncertainty involved, but there was not 

uncertainty structure build up to describe "grey 

uncertainty". In other words, the existing GM(1,1) 

model has a good idea without a convincingly 

rigorous mathematical foundation yet.  

In this paper, we will review the coupling principle 

materialization in GM(1,1) model in section 2. In 

section 3, will propose a families of first order 

differential equation motivated regression models 

under unequal-gaped data, which is suitable for the 

usages in system functioning time analysis. In section 

4, we argue that the differential equation motivated 

regression model is a coupling regression model with 

random fuzzy error terms in nature. In section 5, 

review Liu's [5] fuzzy credibility measure theory and 

then discuss the random fuzzy variable theory in order 

to establish the differential equation motivated 

regression models as a coupling regression with 

random fuzzy error terms. In section 6, we will 

discuss the parameter estimation for the fuzzy variable 

repair effect indexing the random fuzzy error terms of 

the differential equation motivated regression 

modelling on system functioning time sequence under 

maximum entropy principle. Section 7 concludes the 

paper.   

 

2. An univariate DEMR model 

The success of GM(1,1) model lies on the following 

two aspects: data accumulative generation operator 

(abbreviated as AGO), which is the partial sum 

operation in algebra, and a simple regression model 
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coupled with a first-order linear constant coefficient 

differential equation model, which Deng [2] called is 

as whitening differential equation or the shadow 

differential equation. Let X
(0)

 =(x
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 (1), x
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(n)) be a data sequence, and the partial sum with 

respect to X
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Definition 1. Given a (strictly positive) discrete real-

valued data sequence X
(0)

 =(x
(0)

(1), x
(0)

(2),…, x
(0)

(n)), 

the equation 

 

     ,)()( )1()0(

kkzkx                            (3) 

   nk ,,4,3,2  , 

 

“coupled” with the first-order constant coefficient 

linear ordinary differential equation. 
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is called a univariate DEMR model with respect to the 

data sequence X
(0)

 = (x
(0)

(1), x
(0)

 (2), …, x
(0)

(n)) . 

Parameter β is called the developing coefficient, 

parameter  is the grey input, term x
(0)

 is called a grey 

derivative and term x
(1)

(k) is called the k
th
 1-AGO of 

X
(0)

 value (partial sum in fact). Furthermore, the 

differential equation dx
(1)

/dt + βx
(1)

 = α in Eq. (4) is 

called the whitening differential equation or the 

shadow equation of the grey differential equation Eq. 

(3) by Deng [2]. The unknown parameter values (α,β) 

can be estimated in terms of a standard regression. 

Note that Eq. (3) can be re-written as in a simple 

regression form, 
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The estimate for regression parameter pair  , , 
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The grey filtering-prediction equation is thus 
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Note that Eq. (10) is the discrete version of the 

solution to the differential equation (Eq. (4)) 
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The typical goodness-of-fit measure of GM(1,1) 

model is the (absolute) relative error described by 

Deng [2], i.e. 
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and the model efficiency is defined as 
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The nature of the univariate DEMR model can be 

identified as that the model couples a differential 

equation model and a simple regression model 

together organically. The form of the motivated 

differential equation (i.e., Deng’s whitening 

differential equation) in Eq. (4) determines the form 

of the coupling regression (i.e., CREG) in Eq. (3). The 

data assimilated parameter pair  ,a b  in CREG 

determines the system parameter pair  ,  . The 

coupling translation rule is listed in Table 1. 
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Table 1. Coupling Rule in Univariate DEMT Model 
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In DEMR modelling, the motivated differential 

equation and the coupling regression model are not 

separable but are organic integration. The DEMR 

models are differential equation motivated but defined 

by system data. A DEMR model starts with a 

motivated differential equation, then the coupling 

regression model is specified in the form “translated” 

from the form of the motivated differential equation, 

in return, in terms of coupling regression model, the 

parameters specifying the motivated differential 

equation are estimated under L2-optimality, and 

finally, the solution to the motivated differential 

equation (or the discredited solution) equipped with 

data-assimilated parameters is used for system 

analysis or prediction.  In nature a DEMR model is a 

coupling of a motivated differential equation and a 

regression formed by the discredited version of the 

motivated differential equation. We call the 

“translation” rule in grey differential equation 

modelling as a coupling principle. 

 

3. Unequal-gapped differential equation 

motivated regression model with term of 

product of exponential and sine function  

The basic form of the first order linear differential 

equation with constant term in right side is 
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Note here, the proposal of the motivated differential 

equation in Eq. (14) is featured by the term 

sinte t   to replacing the constant term  in Eq. (4) 

with an intention that the fluctuating pattern of 

 sinte t   will help the model goodness-of-fit. 
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differential equation Eq. (14) takes a form 

 

         tBtAex t

p cossin 00 .   (18) 

 

Note that px satisfies Eq. (14), thus substitute the 

particular solution into Eq. (14), we obtain 
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Solving the linear equation Eq. (19), we obtain 

the coefficients 0A  and 0B  respectively as follows 
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In theory, the expressions of 0A  and 0B  will 

determine the particular solution px  

 

    )sin(0   teAx t

p  

 

          )cos(0   teB t
     (22) 

 

which will result in the general solution to Eq. (14) as 
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Note that for the unequal-gapped data sequence, 
              0 0 0 0

1 2, , , nX x t x t x t , the coupling (or 

translation) rule is slightly different from the equal-

gapped data sequence. 

 

Table 2. Coupling Principle in unequal gapped 

GM(1,1) Model. 
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The coupling regression is 
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since  and  are given (in a manner by trials and 

errors).  

Formally, we have a DEMR model as 
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4. Fuzzy repair effect structure  

In standard regression modelling exercises, it is often 

to assume that the error terms i , 1,2, ,i n  are 

random with zero mean and constant variance, i.e., 

 E 0i   and   2VAR i   , 1,2, ,i n . It is 

typically assuming a normal distribution with zero 

mean and constant variance, i.e.,  20,N  .  

Furthermore, as we pointed out that a grey differential 

equation model is a motivated differential equation 

motivated regression, which takes the form translated 

from the motivated differential equation, as shown in 

Table 1 for GM(1,1) case.  However, we should be 
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fully aware that translation back and forward between 

the motivated differential equation and the coupling 

regression will bring in new error which is different 

from the random sampling error  20,N  . The errors 

brought in come from the steps of the usage of 

difference            0 1 1
1x k x k x k   to replace the 

derivative  
t k

dx dt


and the usage of the average 

accumulated partial sum    1

kz t to replace the 

primitive function    1

kx t  during the translation 

between the motivated differential equation and the 

coupling regression. 

Our simulation studies have shown that the coupling-

introduced error is dependent upon the grids size  , or 

equivalent to the total number of approximation N. 

The simulation evidences have shown that the larger 

the number of approximating grid, or equivalently, the 

smaller the approximating grid, the coupling 

translation error is smaller. However, the coupling 

translation error and the approximating grid do not 

hold a deterministic functional relation. What we can 

see is the functional relation has a certain degree of 

belongingness. In other words, the coupling 

translation process induces a fuzzy error term, denoted 

as   with a membership function.  

We perform a simulation study of the error occurrence 

frequencies of approximating  cos 2  by 

    sin 2 sin 2 x x     .   
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Figure 1. Error occurrence frequency 

 

Therefore, in general the error terms of a differential 

equation motivated regression model (i.e., grey 

differential equation in current grey theory literature) 

is fuzzy because the vague nature of the error 

occurrences. 

As a standard exercise, the fuzzy error component ie  

may be assumed as triangular fuzzy variable with a 

membership function 
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which has a fuzzy mean zero.  

However, in the modelling of system functioning 

times, we further note that the repair will reset the 

system dynamic rule so that the repair impact may be 

understood as a fuzzy variable having a triangular 

membership 
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The fuzzy mean of the fuzzy repair effect is thus 
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which provides a repair effect structure. Therefore, the 

“composite” fuzzy “error” term appearing in the 

differential equation motivated regression for 

modelling a system function time will be 
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with a triangular membership function, i.e., 
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because the sum of two triangular fuzzy variables is 

still a triangular fuzzy variable. The total error 
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which is a sequence of random fuzzy variables 

because the summation nature of a random fuzzy 

variable and a fuzzy variable according to Liu [5]. 

Now, we reach a point that the random fuzzy variable 

concept is involved and therefore it is necessary to 
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have a quick review on the relevant theoretical 

foundation. 

 

5. A random fuzzy variable foundation  

First we need to review the fuzzy credibility measure 

theory foundation proposed by Liu [5], then we will 

establish the normal random fuzzy variable theory for 

a facilitation of error analysis in the differential 

equation motivated regression models. 

Let   be a nonempty set, and 2
 the power set on 

 . Each element, let us say, A , 2A   is called 

an event. A number denoted as  Cr A , 

 0 Cr 1A  , is assigned to event 2A  , which 

indicates the credibility grade with which event 

2A   occurs.  Cr A satisfies following axioms 

given by Liu [5]: 

Axiom 1.  Cr 1  . 

Axiom 2. Cr  is non-decreasing, i.e., whenever 

A B ,    Cr CrA B . 

Axiom 3. Cr   is self-dual, i.e., for any 

2A  ,    Cr Cr 1cA A  .  

Axiom 4.    Cr 0.5 sup Cri i i
i

A A      for any  iA  

with  Cr   0.5iA  . 

Axiom 5. Let set functions ]1,0[2:}{ 
k

kCr satisfy 

Axioms 1-4, and 1 2 p    , then: 
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Definition 5.1. Liu [5] Any set function 

Cr : 2 0,1  satisfies Axioms 1-4 is called a  , -

credibility measure (or classical credibility measure). 

The triple  Cr,2,   is called the  , -credibility 

measure space. 

 

Definition 5.2. Liu [5] A fuzzy variable   is a 

mapping from credibility space  Cr,2,   to the set 

of real numbers, i.e.,  : ,2 ,Cr   . 

 

Definition 5.3. Liu [5] The (induced) membership 

function of a fuzzy variable   on  Cr,2,   is: 
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Conversely, for given membership function the 

credibility measure is determined by the credibility 

inversion theorem.  
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As an example, if the set B is degenerated into a point 

x, then 
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Definition 5.5. Liu [5] The credibility distribution 

 : 0,1   of a fuzzy variable   on  Cr,2,   is 
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The credibility distribution ( )x  is the accumulated 

credibility grade that the fuzzy variable   takes a 

value less than or equal to a real number x . 

Generally speaking, the credibility distribution Φ is 

neither left-continuous nor right-continuous. 

 

Theorem 5.6. Liu [5] Let   be a fuzzy variable on 

 Cr,2,   with membership function μ. Then its 

credibility distribution, 
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Definition 5.7. Liu [5]  Let Φ be the credibility 

distribution of the fuzzy variable  . Then function  

: [0, )    of a fuzzy variable   is called a 

credibility density function such that, 
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x
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Now we are ready to state the normal random fuzzy 

variable theory for the error analysis in the repairable 

system modelling. 

Liu [5] defines a random fuzzy variable as a mapping 

from the credibility space  Cr,2,   to a set of 

random variables.  We would like to present a 

definition similar to that of stochastic process in 
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probability theory and expect readers who are familiar 

with the basic concept of stochastic processes can 

understand the comparative definition.  

 

Definition 5.8. A random fuzzy variable, denoted as 

  ,X
 

    , is a collection of random variables 

X  defined on the common probability space 

 , Pr A,  and indexed by a fuzzy variable     

defined on the credibility space  Cr,2,  .  

Similar to the interpretation of a stochastic process, 

 ,tX X t   , a random fuzzy variable is a 

bivariate mapping from  , 2 A  to the space 

 ,B . As to the index, in stochastic process theory, 

index used is referred to as time typically, which is a 

positive (scalar variable), while in the random fuzzy 

variable theory, the “index” is a fuzzy variable, say, 

 . Using uncertain parameter as index is not starting 

in random fuzzy variable definition. In stochastic 

process theory we already know that the stochastic 

process   ,X X
 

   uses stopping time 

,  , which is an (uncertain) random variable 

as its index. 

In random fuzzy variable theory, we may say that that 

average chance measure, denoted as ch , plays a 

similar role similar to a probability measure, denoted 

as Pr , in probability theory. 

 

Definition 5.9. Liu and Liu [6] Let  be a random 

fuzzy variable, then the average chance measure 

denoted by ch , of a random fuzzy event x , 

is  
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Then function  is called as average chance 

distribution if and only if 
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Liu [5] stated that if a random variable   has zero 

mean and a fuzzy variable , then the sum of the two, 

  , results in a random fuzzy variable  . Now, it 

is time to find the average chance distribution for a 

normal random fuzzy variable 2,
d
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The fuzzy mean is assumed to have a triangular 

membership function 
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which gives the credibility distribution for the fuzzy 

mean,  . 

Then the critical step is to derive the expression of 

  .),(Pr)(   xCr  For normal 

random fuzzy variable with a triangular fuzzy mean,  
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Then the range for the integration of the integrand 

 )()(: 1   xCr   with respect to   

is listed in Table 3.  
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which leads to the average chance distribution 

 

     x
  


























 













 












 bxax

ab

ax

2
 

 

   
  


























 













 













 cxbx

bc

bcx

2

2
 

 

   






 




cx

  



















ax

bx

duuu
ab

)(
2

 

   
  



















bx

cx

duuu
bc

)(
2

     (48) 

 

6. Fuzzy repair effect estimation under fuzzy 

maximum entropy principle 

Entropy is a measure of uncertainty. The entropy of 

De Luca and Termini
 
[1] characterizes uncertainty 

resulting primarily from the linguistic vagueness 

rather than resulting from information deficiency, and 

vanishes when the fuzzy variable takes all the values 

with membership degree 1. However, we hope that the 

degree of uncertainty is 0 when the fuzzy variable 

degenerates to a crisp number, and is maximum when 

the fuzzy variable is an equi-possible one, i.e., all 

values have the same possibility. In order to address 

such a requirement, Li and Liu
 
[6] provided a new 

definition based on credibility measure. 

 

Definition 6.1.(Fuzzy Entropy) Let  be a continuous 

fuzzy variable defined on a credibility space 

 Cr,2,  , then the fuzzy entropy, [ ]H , is defined 

by 
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For convenience, we name ( )S t as entropy density at 

point t. 

The maximum entropy principle provides a route such 

that it is possible to select the parameter(s)   that 

maximizes the value of entropy function and satisfies 

certain given constraints for specifying a membership 

function with a given form. However, what we aim at 

is not obtaining parameters from the theoretical 

entropy function rather we must determine the 

parameters based on observations of the fuzzy 

variable, say,  . In other words, we need to develop a 

criterion to obtain data-assimilated membership 

function. Therefore, we suggest an empirical fuzzy 

entropy function for parameter searching since the 

optimal value of the data-dependent object function 

has to reflect the constraints specified by 

observational data implicitly. The data assimilated 

object function is the average of entropy densities 

evaluated at 
1 2{ , , , }nz z z respectively, i.e., 

 

         


N

i
izZCrS

n
LLJ

1
21 ,;)(

1
,     (51) 

 

where a finite interval ],,[ 21 LL  012  LL  is 

defined for the domain of the entropy. Note that with 

the finiteness of empirical entropy, 

];[],[ 21 ZHLLJ   asymptotically with 

parameter constrained by the data structure and 

],,[ 21 LLZ   012  LL  which guarantees the 

theoretical entropy H Z  exists and finite in general.  
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Then, we can estimate the parameter  , ,a b c    of 

the membership of fuzzy composite error in terms of 

maximum entropy principle. Furthermore, we can 

isolate a few repair as bad-as-old regime and thus 

repair effect is zero for estimation parameter   for 

specifying i , the translation error because under 

triangular membership assumption, the empirical 

membership can be defined and satisfies the 

asymptotical requirements. 

 

7. Conclusion 

In this paper, we argue that a differential equation 

motivated regression model will result in a regression 

model with random fuzzy error terms and thus 

complete our mission for solidifying a rigorous 

mathematical foundation for the grey modelling on 

system repair effects proposed by Guo [3], [4]. The 

maximum entropy principle facilitates a way for fuzzy 

parameter estimation. However, the average change 

distribution is also providing a way for parameter 

data-assimilation.  
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