PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An optimal spectroscopic feature fusion strategy for MR brain tumor classification using Fisher Criteria and Parameter-Free BAT optimization algorithm

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, a fused metabolite ratio is proposed that integrates the conventional metabolite ratios in a weighted manner to improve the diagnostic accuracy of glioma brain tumor categorization. Each metabolite ratio is weighted by the value generated by the Fisher and the Parameter-Free BAT (PFree BAT) optimization algorithm. Here, feature fusion is formulated as an optimization problem with PFree BAT optimization as its underlying search strategy and Fisher Criterion serving as a fitness function. Experiments were conducted on the magnetic resonance spectroscopy (MRS) data of 50 subjects out of which 27 showed low-grade glioma and rest presented high-grade. The MRS data was analyzed for the peaks. The conventional metabolite ratios, i.e., Choline/N-acetyl aspartate (Cho/NAA), Cho/Creatine (Cho/Cr), were quan-titated using peak integration that exhibited difference among the tumor grades. The difference in the conventional metabolite ratios was enhanced by the proposed fused metabolite ratio that was duly validated by metrics of sensitivity, specificity, and the classification accuracy. Typically, the fused metabolite ratio characterized low-grade and high-grade with a sensitivity of 96%, specificity of 91%, and an accuracy of 93.72% when fed to the K-nearest neighbor classifier following a fivefold cross-validation data partitioning scheme. The results are significantly better than that obtained by the conventional metabolites where an accuracy equal to 80%, 87%, and 89% was attained. Prominently, the results using the fused metabolite ratio show a surge of 4.7% in comparison to Cho/Cr + Cho/NAA + NAA/Cr. Moreover, the obtained results are better than the similar works reported in the literature.
Twórcy
autor
  • Department of Electronics & Communication Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
autor
  • Department of Electronics & Communication Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
autor
  • Department of Computer Science and Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
Bibliografia
  • [1] Bauer S, Wiest R, Nolte L, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 2013;58:R97–129.
  • [2] Callot V, Galanaud D, Le Y, Confort-gouny S, Ranjeva J-P, Cozzone PJ, et al. 1H MR spectroscopy of human brain tumours: a practical approach. Eur J Radiol 2008;67:268–74.
  • [3] Sibtain NA, Howe FA, Saunders DE. The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clin Radiol 2007;62:109–19.
  • [4] Delenyi FASZDEE, Ubin CHR, Stève FRE, Rand SYG, Ichel M, Écorps D, et al. A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: nosologic images. Nat Med 2000;6:1287–9.
  • [5] Shokry A. MRS of brain tumors: diagrammatic representations and diagnostic approach. Egypt J Radiol Nucl Med 2012;43:603–12.
  • [6] Georgiadis P, Kostopoulos S, Cavouras D, Glotsos D, Kalatzis I, Sifaki K, et al. Quantitative combination of volumetric MR imaging and MR spectroscopy data for the discrimination of meningiomas from metastatic brain tumors by means of pattern recognition. Magn Reson Imaging 2011;29:525–35.
  • [7] Nachimuthu DS, Baladhandapani A. Multidimensional texture characterization: on analysis for brain tumor tissues using MRS and MRI. J Digit Imaging 2014;27:496–506.
  • [8] Lukas L, Devos A, Suykens JAK, Vanhamme L, Howe FA, Majós C, et al. Brain tumor classification based on long echo proton MRS signals. Artif Intell Med 2004;31:73–89.
  • [9] Devos A, Simonetti AW, van der Graaf M, Lukas L, Suykens JAK, Vanhamme L, et al. The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. J Magn Reson 2005;173:218–28.
  • [10] Arizmendi C, Sierra DA, Vellido A, Romero E. Automated classification of brain tumours from short echo time in vivo MRS data using Gaussian Decomposition and Bayesian Neural Networks. Expert Syst Appl 2014;41:5296–307.
  • [11] Arizmendi C, Vellido A, Romero E. Classification of human brain tumours from MRS data using Discrete Wavelet Transform and Bayesian Neural Networks. Expert Syst Appl 2012;39:5223–32.
  • [12] Naser RKA, Hassan AAK, Shabana AM, Omar NN. Role of magnetic resonance spectroscopy in grading of primary brain tumors. Egypt J Radiol Nucl Med 2016;47: 577–84.
  • [13] Jouan A, Allard Y. Land use mapping with evidential fusion of features extracted from polarimetric synthetic aperture radar and hyperspectral imagery. Inf Fusion 2004;5:251–67.
  • [14] Singh M, Singh S, Gupta S. An information fusion based method for liver classification using texture analysis of ultrasound images. Inf Fusion 2014;19:91–6.
  • [15] Kumar A, Kumar A. Adaptive management of multimodal biometrics fusion using ant colony optimization. Inf Fusion 2016;32:49–63.
  • [16] Raymer ML, Punch WF, Goodman ED, Kuhn LA, Jain AK. Dimensionality reduction using genetic algorithms. IEEE Trans Evol Comput 2000;4:164–71.
  • [17] Lowe DG. Similarity metric learning for a variable-kernel classifier. Neural Comput 1995;7:72–85.
  • [18] Kaur T, Saini BS, Gupta S. A novel feature selection method for brain tumor MR image classification based on the Fisher criterion and parameter-free Bat optimization. Neural Comput Appl 2017;1–14. http://dx.doi.org/10.1007/s00521-017-2869-z.
  • [19] Paper F, Liu X, Ma L, Song L, Zhao Y, Zhao X, et al. Imaging signs of lung diseases through a new feature selection method based on Fisher criterion and genetic optimization. IEEE J Biomed Health Inform 2015;19:635–47.
  • [20] Staal FJT, Van Der Luijt RB, Baert MRM, Van Drunen J, Van Bakel H, Peters E, et al. A novel germline mutation of PTEN associated with brain tumours of multiple lineages. Br J Cancer 2002;86:1586–91.
  • [21] Kennedy J, Eberhart R. Particle swarm optimization. Proc ICNN'95 – Int Conf Neural Networks, vol. 4. Perth, Australia: IEEE; 1995. p. 1942–8. http://dx.doi.org/10.1109/ICNN.1995.488968.
  • [22] Shrivastava P, Shukla A, Vepakomma P, Bhansali N, Verma K. A survey of nature-inspired algorithms for feature selection to identify Parkinson's disease. Comput Methods Programs Biomed 2017;139:171–9.
  • [23] Horng M-H, Liou R-J. Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Syst Appl 2011;38:14805–11.
  • [24] Mahdavi M, Fesanghary M, Damangir E. An improved harmony search algorithm for solving optimization problems. Appl Math Comput 2007;188:1567–79.
  • [25] Chatterjee A, Siarry P, Nakib A, Blanc R. An improved biogeography based optimization approach for segmentation of human head CT-scan images employing fuzzy entropy. Eng Appl Artif Intell 2012;25:1698–709.
  • [26] El Aziz MA, Hassanien AE. Modified cuckoo search algorithm with rough sets for feature selection. Neural Comput Appl 2016;1–10.
  • [27] Lin M, Hua Z. Improved PSO algorithm with adaptive inertia weight and mutation. World Congr Comput Sci Inf Eng. IEEE; 2009. p. 622–5. http://dx.doi.org/10.1109/CSIE.2009.428.
  • [28] Wang G-G, Guo L, Duan H, Wang H. A new improved firefly algorithm for global numerical optimization. J Comput Theor Nanosci 2014;11:477–85.
  • [29] Yang X-S. A new metaheuristic bat-inspired algorithm. Nat Inspired Coop Strateg Optim (NICSO 2010). Springer; 2010. p. 65–74.
  • [30] Lu S, Qiu X, Shi J, Li N, Lu Z-H, Chen P, et al. A pathological brain detection system based on extreme learning machine optimized by bat algorithm. CNS Neurol Disord Drug Targets 2017;16:23–9.
  • [31] Singh M, Verma A, Sharma N. Bat optimization based neuron model of stochastic resonance for the enhancement of MR images. Biocybern Biomed Eng 2017;37:124–34.
  • [32] Manikandan S, Ramar K, Iruthayarajan MW, Srinivasagan KGG, Willjuice Iruthayarajan M, Srinivasagan KGG. Multilevel thresholding for segmentation of medical brain images using Real coded Genetic Algorithm. Measurement 2014;47:558–68.
  • [33] An J, Jin H, Liu C. Improved real-coding genetic algorithm. Int Conf Networks Secur Wirel Commun Trust Comput 2009, NSWCTC'09, vol. 2. 2009. pp. 696–8.
  • 34] Yilmaz S, Kucuksille EU. A new modification approach on bat algorithm for solving optimization problems. Appl Soft Comput 2015;28:259–75.
  • [35] Meng X-B, Gao XZ, Liu Y, Zhang H. A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization. Expert Syst Appl 2015;42:6350–64.
  • [36] Bakwad KM, Pattnaik SSSS, Sohi BS, Devi S, Panigrahi BKBK, Das S, et al. Hybrid bacterial foraging with parameter free PSO. 2009 World Congr Nat Biol Inspired Comput, NaBIC 2009. IEEE; 2009. p. 1077–81.
  • [37] Ramana Murthy G, Senthil Arumugam M, Loo CK. Hybrid particle swarm optimization algorithm with fine tuning operators. Int J Bio-Inspired Comput 2009;1:14–31.
  • [38] Lee MC, Nelson SJ. Supervised pattern recognition for the prediction of contrast-enhancement appearance in brain tumors from multivariate magnetic resonance imaging and spectroscopy. Artif Intell Med 2008;43:61–74.
  • [39] Yang X-S, Deb S. Cuckoo search via Levy flights. 2009 World Congr Nat Biol Inspired Comput, NaBIC 2009. 2009. pp. 210–4.
  • [40] Yang X-S, Deb S. Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 2010;1:330–43.
  • [41] Simonetti AW, Melssen WJ, van der Graaf M, Postma GJ, Heerschap A, Buydens LMC. A chemometric approach for brain tumor classification using magnetic resonance imaging and spectroscopy. Anal Chem 2003;75:5352–61.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d745852-02df-4352-bd68-fc220832323b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.